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Introduction

Transcription factors are a class of proteins that can bind to 
specific DNA sequences and are known to be highly active 
in humans. They can form complexes either alone or with 
other proteins, and play a pivotal role in regulating specific 
gene expression (1).

In tumors, a variety of direct or indirect mechanisms 
deregulate both the activity and content of transcription 
factors, and dysregulation of transcription factors has 
also become a hallmark characteristic of the tumor (2,3). 
Changes in chromatin structure, amplification/deletion of 
genes encoding the transcription factors, and mutations 
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directly affect the activity of transcription factors; changes 
in non-coding sites, transcription factors and abnormal 
distribution may also indirectly affect the activity of 
transcription factors. However, targeting chemotherapeutic 
strategies has been greatly restricted, and even historically, 
transcription factors have been regarded as “undruggable 
targets”. Unlike kinase proteins, kinases often have 
intracellular active sites that are easier to predict and 
recognize. Transcription factors usually work through 
protein-DNA or protein-protein interactions. For protein-
DNA interactions, the DNA binding interface offers a 
highly positive charge and a convex structure, which is 
not conducive to target. For protein-protein interactions, 
the surface of the binding interface is usually flat, and the 
absence of a pocket structure such as a kinase active site 
also makes this drug development a great challenge (4,5). 
Despite these challenges, several generations of scientists 
have developed several methods to target transcription 
factors, including RNA interfering (RNAi), targeting of 
post-translational modification and degrading transcription 
factors with PROTACs, and targeting of intrinsically 
disordered regions of transcription factors and targeting 
the auto-inhibited state of transcription factors (6-10). 
The development of these new targeted drugs will greatly 
advance the treatment of future tumors and offer hope to 
patients.

In this review, we review the current knowledge 
regarding the PROTAC technology, the research process 
and the agents currently available for the treatment of 
PCa, and future directions for the development of the 
PROTAC technology. A comprehensive literature search 
was conducted in the PubMed/Medline, Cochrane, Scopus 
and ClinicalTrials databases using the keywords “prostate 
cancer” OR “prostate carcinoma” OR “castration-resistant 
prostate cancer” AND “PROTACs” OR “proteolytic 
targeting chimera” OR “PROTAC”. We chose to include 
the most relevant reports based on the quality, applicability, 
and development of the research. We present the following 
article in accordance with the Narrative Review reporting 
checklist (available at http://dx.doi.org/10.21037/tau-20-
1357). 

Background

PROTAC (PROteolysis-TArgeting Chimera, PROTAC) 
is a special proteolytic targeted chimera technology (11).  

PROTAC is  a  strategy to chemical ly  knockdown 
transcription factors at the protein level. One end of the 
chimera contains a specific binding ligand for protein 
degradation, and the other end is a binding ligand for the 
E3 ubiquitin ligase, with both ends being connected by a 
linker (12).

Ubiquitin-mediated protein degradation is a critical 
pathway by which cells regulate their cellular protein levels. 
The ubiquitin-mediated protein degradation pathway can 
degrade more than 80% of the ubiquitous proteins in cells. 
This pathway plays a role in almost all cell life processes 
including cell cycle regulation, cell proliferation, cell 
apoptosis, and signaling pathways within and outside the 
cell (13). Among these enzymes, the E1 ubiquitin activating 
enzyme, E2 ubiquitin conjugating enzyme and E3 ubiquitin 
ligase co-operate with each other to label the substrate 
protein for ubiquitination, and then recruit the proteasome 
for degradation (14).The E3 ubiquitin ligase has clear 
specificity for the labeling process of substrate proteins, but 
also provides a theoretical and applied basis for the targeted 
labeling degradation of PROTACs. The special chimera 
structure of PROTACs narrows the space between the 
target protein and the intracellular E3 ubiquitin ligase by 
self-folding to form a target protein-PROTACs chimera-E3 
ubiquitin ligase terpolymer, which makes the E3 ubiquitin 
ligase ubiquitinate the target protein, and then uses the 
ubiquitin-proteasome degradation pathway to initiate the 
intracellular ubiquitinating hydrolysis process to complete 
the process of chemically targeted degradation of the 
protein (15).

Research progress of proteolytic targeted 
chimera technology

In 2001, the research group of Professors Deshaies 
and Crews first reported the chemical degradation of  
proteins (11). The intracellular ubiquitination and 
degradation of specific proteins was subsequently 
significantly expanded and utilized. As one of the first 
generation of PROTACs, PROTAC-1 is one of the first 
PROTAC molecules. This is the first generation of peptide-
based PROTACs technology, which relies on the application 
of comprehensive analysis of substrate binding sites and 
structural information for the identification of the proteins. 
One end of the PROTAC-1 molecule utilizes ovalicin (OVA) 
to cooperate with the histidine at the 231st active site of the 
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amino peptidase-2 (MetAP-2) peptide. The other end of the 
phospho-peptide of the nuclear factor κB inhibitor α (NF-κB  
inhibitor α, IκBα) structure can bind to β-TRCP in the E3 
ubiquitin ligase protein complex. PROTAC-1 binds the 
MetAP-2 protein and β-TRCP complex tightly together, 
activating the ubiquitin-proteasome degradation pathway 
to degrade the MetAP-2 protein. Several subsequent 
peptide-based PROTACs, such as PROTAC-2, which uses 
the androgen receptor (AR) ligand dihydrotestosterone to 
link it with the IκBα phospho-peptide to degrade the AR. 
PROTAC-3 uses the estrogen receptor ligand estradiol 
and IκBα phospho-peptide to degrade the estrogen 
receptor (16). In addition, the larger molecular weight of 
the E3 ubiquitin ligand results in unstable structure and 
poor cell permeability. Scientists continue to discover 
and synthesize small molecule ligands for E3 ligases and 
their corresponding derivative structures, such as CRBN, 
cIAP, VHL and other specific E3 ligase small molecule 
ligands (17-20). In view of the fact that the first-generation 
PROTACs needs to be highly dependent on the complex 
use of the target protein substrate site and structure 
information, the second generation PROTACs based on 
small molecule has designed. This improvement allows 
PROTACs to achieve targeted degradation of common 
oncogenic genes and transcription factors in a variety of 
tumors, such as the BCR-ABL fusion protein in chronic 
myeloid leukemia, and the BRD4 protein in acute myeloid 
leukemia and lymphoma, the estrogen receptor protein 
in breast cancer, the TACC3 protein in fibrosarcoma,  
etc. (21-23).

Researchers have also found the problems of off-target 
and sustained-release control of tissue distribution of these 
small molecule PROTACs. In response to this, a research 
group developed the third generation PROTACs in 2013. 
This generation of PROTACs can specifically control 
the temporal and spatial distribution of PROTACs in the 
tissues to better exert their efficacy, and to reduce off-
target distribution in the tissues. PhosphoPROTACs, 
known as phosphate-dependent PROTACs, use activated 
phosphokinase as a target signal to achieve controllable 
degradation (24). There are also PROTACs that use 
ultraviolet light sources in photodynamic therapy to achieve 
controllable PROTACs that can be light-controlled on and 
off (25).

The third-generation controllable PROTACs have 
become a spot for drug research. PROTACs are typically a 

chimera in molecular structure, with the linker connecting 
the two ends of the structure. The choice of a linker, the 
length of the linker, and the binding site between the linker 
and the molecules at both ends also have a greater impact 
on the activity of PROTACs (26). Taking estrogen receptor-
targeted PROTACs as an example, when the linker causes a 
certain gap between the target protein binding site and the 
E3 ubiquitin ligase, PROTACs with 16 atom chains of the 
linker have the highest degradation effects (27). Drugs with 
PROTACs as the universal design principle are becoming 
increasingly common, and it is believed that controllable 
drugs for PROTACs will become a reality in the coming 
decades (28,29).

Advantages and disadvantages of PROTACs

PROTAC has gained many advantages since its inception, 
particularly in its  unique targeting and chemical 
degradation. The site-directed targeting of PROTACs 
does not rely on directly inhibiting the active site of the 
kinase or inhibiting the interaction site for the purpose of 
inhibiting protein function (30). When designing targeted 
sites, there is no need to specifically analyze the active site 
and interaction site of the protein, nor do we consider the 
spatial folding structure of the site as a whole. In theory, as 
long as a functional site is not involved, this approach can 
be used to design PROTACs.

The chemical degradation of PROTACs involves the 
cell’s own ubiquitin-proteasome protein degradation 
pathway. This degradation causes the protein to “disappear” 
within the cell after ubiquitination and hydrolysis, as 
opposed to specifically targeting small molecule compounds 
that block the active sites. This chemical degradation can 
minimize the shortcomings of the short half-life of small 
molecule compounds, and a smaller dose of PROTACs 
can produce significant degradation effects. Since the 
protein has to be re-synthesized after targeted degradation 
to restore its distribution and function, the effect of this 
chemical degradation should be more durable and efficient 
than small-molecule compounds that block its active 
site. Winter et al. compared the therapeutic effects of 
BRD4 degraders with that of BRD4 inhibitors alone. By 
using BRD4 inhibitors alone, BRD4 degraders can more 
efficiently and selectively induce protein degradation in vitro 
and in vivo, as well as delay the progression of leukemia in 
mice (31). With the continual discovery of small molecule 
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ligands for E3 ubiquitin ligase, the range of possibilities 
for the development of PROTACs has been infinitely 
broadened (32).

However, PROTACs are imperfect, and many potential 
problems have been discovered in clinical applications. 
Some PROTACs have poor pharmacokinetics due to their 
large molecular weight and cannot be easily absorbed by 
oral administration. The latter small molecule PROTACs 
improved this shortcoming and improved the oral 
bioavailability. Although several E3 ubiquitin ligases have 
been discovered, the types of small molecule ligands that 
can be properly matched and designed are still limited. 
The functioning of PROTACs is heavily dependent on the 
functional E3 ubiquitin ligase and the ubiquitin-proteasome 
protein degradation system. Once the degradation pathway 
fails or the E3 ubiquitin ligase mutates, drug adaptation 
or acquired resistance may occur. Therefore, predictive 
biomarkers need to be incorporated into the clinical 
treatment practice of PROTACs to address these issues (33).

The existing small-molecule PROTACs should have a 
small molecular weight after improvement, and they can 
enter and exit a large number of tissue cells relatively freely 
in the human body, resulting in a wide tissue distribution, 
causing serious toxic side effects. The third-generation 
PROTACs are a more practical strategy, but their 
application is limited due to the potential DNA damage 
and poor penetration of ultraviolet rays such as UVA. 
Therefore, it is possible to consider developing other light 
sources with better penetrability to precisely control the 
release of PROTACs to expand the scope of applications 
and reduce side effects (34).

Application of proteolytic targeting chimera 
technology in prostate cancer

In PCa, the androgen receptor (AR) is a key protein 
molecule and transcription factor closely related to 
tumorigenesis and development, and is also a drug target for 
various treatment methods including androgen-deprivation 
therapy (35,36). Unfortunately, most patients receiving 
endocrine therapy will enter the castration-resistant 
prostate cancer (CRPC) stage within one to two years, 
progress to a difficult malignant stage and eventually die 
from the disease (37,38). For CRPC patients, the advent of 
AR antagonist drugs such as enzalutamide has a significant 
clinical benefit for these patients (39-41). However, even 

after receiving these next-generation AR antagonist drugs, 
patients continue to become resistant and incurable (42-44).  
This suggests that the still-active AR signaling pathway 
urgently needs to be settled.

As early as 2015, Professor Crews designed a selective 
androgen receptor degrader (SARD; no.SARD279). This 
small molecule contains a hydrophobic group linked to an 
AR ligand, which can induce degradation of AR proteins, 
reduce the expression of AR target genes and inhibit the 
proliferation of androgen-dependent PCa cells (45). This 
innovative degradation common can overcome certain 
resistance mechanisms that are common to traditional 
drugs. In 2018, Professor Crews’ research group continued 
to expand on this technique by combining it with PROTAC 
technology to design a more efficient AR degradation 
agent, named ARCC-4 (46). ARCC-4 is a low-molecular-
weight AR degradation agent that can degrade about 95% 
of the AR protein in PCa cells. It can significantly inhibit 
the proliferation of prostate tumor cells (VCaP, LNCaP, 
PC3, etc.), and also degrade some clinical -related AR point 
mutants (AR-T877A, AR-H874Y, AR-F876L, AR-L702H, 
AR-M896V and other point mutants). Unlike enzalutamide, 
ARCC-4 also has a significant anti-proliferative effect under 
high androgen concentration conditions, which suggests 
that using this degradation technology to overcome 
enzalutamide resistance may be a breakthrough treatment 
for these patients.

At the same time, a research group led by Professor Wang 
from the University of Michigan designed a highly effective 
AR-targeted PROTAC degradation agent (ARD-69) (47).  
In vitro experiments have shown that ARD-69 induces AR 
protein degradation in AR-positive PCa cell lines (LNCaP, 
VCaP and 22Rv1) in a dose- and time-dependent manner. 
At the same time, ARD-69 also reduces the endogenous AR 
protein in these PCa cell lines to below 95%, and effectively 
inhibits the expression of downstream regulatory genes in 
the AR signaling pathway. ARD-69 can effectively inhibit 
cell growth and has an effect that is more than 100 times 
that of the AR antagonist enzalutamide. In vivo experiments 
have shown that a single dose of ARD-69 can effectively 
reduce the levels of AR protein in mouse xenograft tumor 
tissue. These data suggest that AR-targeted degradation 
therapy based on PROTACs may become a more 
viable option for AR-positive CRPC patients. Professor 
Chinnaiyan’s research group has also developed a new AR 
degrader (AR PROTAC degrader, no. ARD-61) based on 
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PROTACs and has carefully elucidated its mechanism of 
action. ARD-61 overcomes the existing resistance process to 
anti-hormone therapies by directly depleting the AR protein 
in both PCa and breast cancer cell lines with AR-positive 
features (48-50). Through in vivo and in vitro experiments, 
studies have found that compared to enzalutamide, ARD-
61 has stronger anti-proliferation and pro-apoptosis effects, 
and significantly inhibits the regulation of the AR signaling 
in cancer cells, while still exerting an inhibitory effect in 
the enzalutamide resistance model. Further analysis found 
that although ARD-61 cannot bind and target AR-V7 (AR 
splice variant 7), it can still inhibit the growth of tumor cells 
with AR-V7 overexpression. Studies have shown that AR is 
still the main driving factor for PCa, and new AR degraders 
have a wider clinical significance for patients who are 
resistant to AR antagonists. The Arvinas company has been 
approved by the US Food and Drug Administration in 2019 
to initiate a phase I clinical trial (NCT03888612) of oral 
PROTACs (ARV-110) targeting the AR protein in patients 
with metastatic CRPC. Another oral PROTAC (ARV-471) 
targeting estrogen receptor protein has also been approved 
for the Phase I clinical trial (NCT04072952) in patients 
with ER positive/HER2 negative locally advanced or 
metastatic breast cancer. 

The mammalian cyclin-dependent kinases (CDKs) 
contain a cell cycle related sub-family (CDK1, CDK2, 
CDK4, CDK6) (51,52). In clinics, CDK4/6 inhibitors 
have emerged as a powerful class of agents for estrogen 
receptor positive breast cancer treatment (53). Targeting 
the cell cycle represents a core attack on a defining feature 
of cancer, given the effects of AR signaling on the cell cycle 
in PCa. This is a key component of the treatment of cancer. 
Given the importance of CDK4 and CDK6, we propose 
that CDK4/6 inhibitors and novel strategic combinatorial 

therapies have the potential to improve patients’ overall 
survival and quality of life (54). Steinebach et al. designed 
a VHL-based PROTAC (CST620) exhibiting dual activity 
against CDK4 and CDK6, and showed potent and long-
lasting degrading activity in human and mouse cells and 
inhibited proliferation of several leukemia, myeloma and 
breast cancer cell lines (55). This attractive approach for 
targeted degradation of CDK4/6 may be further tested  
in PCa.

In summary, the beginning of clinical trials of oral 
PROTAC targeting transcription factors ends the period 
in which transcription factors are “undrugable”. The 
development of these novel and exciting clinical trials 
provides great opportunities for future clinical applications. 
The basic properties of the compounds described above are 
listed in Table 1 and are depicted in Figure 1.

Future directions

PROTACs have almost all the advantages of existing small 
molecule inhibitors, are easy to administer orally, have good 
cell permeability and solubility, and have extensive targeting 
profiles. As a transcription factor, the AR protein in PCa 
only needs to be targeted by PROTACs and does not need 
to consider whether it can block its active site or interfere 
with its interaction with other proteins, making it easier 
to develop and synthesize (56,57). With the progression of 
PCa, accumulating studies have found that the AR signaling 
pathway is inactivated in highly malignant neuroendocrine 
prostate cancer, which suggests that we need to develop 
appropriate drugs for patients with neuroendocrine prostate 
cancer. PROTACs are believed to be a progressive solution 
to this problem and have become an important tool in 
cancer treatment (58).

Table 1 The basic chemical structures, biological activities, physiochemical properties of the compounds. AR, androgen receptor; VHL, Von 
Hippel-Lindau; CDK4/6, cyclin dependent kinase 4/6

Name Target E3 ligase Molecular weight (g/mol) Molecular formula Degradation activity

ARCC-4 AR VHL 1,024.2 C53H56F3N7O7S2 Degradation of AR protein in VCaP cells 
after 20 h treatment

ARD69 AR VHL 1,129.8 C62H74ClFN8O7S Degradation of AR protein in LNCaP/
VCaP/22Rv1 cells after 24 h treatment

ARD61 AR VHL 1,095.8 C61H71ClN8O7S Degradation of AR protein in LNCaP/VCaP 
cells after 6 h treatment 

CST620 CDK4/6 VHL 1,064.5 C55H73N11O9S Degradation of CDK4/6 in several leukemia, 
myeloma and breast cancer cell lines
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Figure 1 Chemical structures of the reported degraders. (A) Chemical structures of ARCC-4. (B) Chemical structures of ARD69. (C) 
Chemical structures of ARD61. (D) Chemical structures of CST60.
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