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Introduction

Approximately 8–15% of couples are affected by infertility—
the inability of a man and a woman to conceive a child or 
carry a pregnancy to delivery, after 12 months of unprotected 
intercourse (1-4). A male factor is the primary contributor 
among approximately 20% of the cases and contributes 

in another 30–40% of cases (3-11). Genetic factors are 
diagnosed in approximately 15–20% of severe male factor 
infertility (azoospermia or severe oligozoospermia) (12,13).

The mammalian Y-chromosome is an acrocentric 
chromosome composed of two pseudoautosomal regions 
(PARs) and two arms—a short arm (Yp), and a long arm 
(Yq), separated by a centromere (Figure 1) (14). The PARs 
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(PAR 1 and PAR2) are short regions of homology between 
the X- and Y-chromosome, that behave like an autosome, 
recombining during meiosis (15). They are located at the 
termini of both chromosomes—PAR1 is 2.7 Mb region at 
the telomere of the short arm, whereas PAR2 is a much 
smaller 0.3 Mb region at the telomere of the long arm (16).

The male-specific region of the Y-chromosome (MSY), 
first reported in 2003 by Skaletsky et al., spans 95% of 
the chromosome’s length, and is flanked by PAR1 and  
PAR2 (17). The MSY is a mosaic of heterochromatic 
sequences and three classes of euchromatic sequences; 
X-transposed, X-degenerate, and ampliconic (17,18). One 
hundred and fifty-six transcription units are contained in 
the reference MSY, which include 78-protein coding genes 
encoding 27 proteins. Sixty of the 78 coding genes and 
74 non-coding transcription units comprise ampliconic 
sequences (17). These ampliconic sequences are somewhat 
novel, as they are largely homogenous with almost identical 
sequence identity, yet contain rich teste specific gene 
regions (19). Within the MSY and on the long arm of the 
Y-chromosome, are regions known as the azoospermia 
factor (AZF) regions, which contain genes critical for 
spermatogenesis and male fertility (11,20). These regions 
contain repeated homologous sequences vulnerable to 
deletions or duplications through non-allelic homologous 
recombination (NAHR) (13).

Microdeletions on Yq are the second most common 

genetic cause of male infertility after Klinefelter syndrome. 
Molecular diagnosis of these microdeletions is now a 
standard clinical investigation in the workup of severe male 
infertility (21-24). The incidence of Yq microdeletions 
is estimated to be 1/4,000 in the general population, but 
has been found to be much higher in infertile men (21). 
Incidence of Yq microdeletions in azoospermic men is 
greater than in oligozoospermic men, and has been reported 
to be as high as 15–20% in some populations (21,24-26).

Most of the Yq microdeletions resulting in azoospermia 
or severe oligozoospermia occur in the AZF regions. Five 
recurrent deletions within three different regions have 
been reported: AZFa, AZFb, AZFbc (with two different 
breakpoints) and AZFc (13,27,28). A fourth region, AZFd, 
was first described by Kent-First et al. using multiplex-PCR 
reactions and postulated to exist between AZFb and c (29). 
The existence of the AZFd region remains controversial; 
whereas Krausz et al.—in their European Academy of 
Andrology (EAA)/European Molecular Quality Network 
(EMQN) best practice guidelines—argue that it does not 
exist, others have reported AZFd deletions independent of 
AZFc deletions (21,29-34). Microdeletions can also involve 
combined regions (i.e., AZFab, AZFabc, AZFac, AZFad, 
AZFbc, AZFbd and AZFbcd), leading to different degrees of 
oligozoospermia/azoospermia (22,35-37). This manuscript 
will review the genetic basis, as well as the methods for 
diagnosis, of this common cause of male infertility.

Types of deletions

AZFa

The AZFa region is 1,100 kb long and contains two single-
copy genes: USP9Y and DDX3Y. Studies have identified the 
origin of complete AZFa deletions to be the homologous 
recombination between two identical sequence blocks 
(21,38-40). Even though two major patterns of deletions are 
found with slightly different breakpoints, both result in the 
loss of approximately 792 kb which includes both USP9Y 
and DDX3Y (21,39-41).

AZFa region deletions comprise 0.5–4% of all Yq-
microdeletions (21,42). Complete AZFa deletions lead 
to azoospermia and Sertoli cell-only syndrome (SCOS) 
(13,21,22,25,27,41,43,44). In complete AZFa deletions, 
the chances of finding spermatozoa upon surgical testicular 
exploration for intracytoplasmic sperm injection (ICSI) is 
nil, therefore, testicular sperm extraction (TESE) or micro-
TESE should not be offered (13,21,25). Gene-specific 

Figure 1 Structure of the human Y-chromosome.
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deletions are very rare, and have only been reported in the 
AZFa region (i.e., USP9Y), and can lead to a phenotype 
varying from normozoospermia to azoospermia (13,23,45).

AZFb

The AZFb region is structurally complex and partially 
overlaps the AZFc region. Within AZFb, there are 14 multi-
copy sequence units, or amplicons. Of these 14 amplicons, 
seven are restricted to AZFb, while the remaining are 
shared with AZFc. These amplicons are further categorized 
based on symmetrical arrays of contiguous repeats called 
palindromes. AZFb contains palindromes P2–P5, as well 
as the proximal part of P1. The complete deletion of AZFb 
is caused by the homologous recombination between the 
palindromes P5/proximal P1 and leads to the loss of a  
6.2 Mb region that comprises 32 gene copies and 
transcription units (21,46,47). Complete deletions of AZFb 
occur at a frequency of 1–5% of all Yq-microdeletions and 
lead to similar results as AZFa deletion, namely SCOS or 
spermatogenic arrest resulting in azoospermia (21,25,42-44). 
It is worth noting however, that three case reports found 
arrest of spermatid and oligozoospermia with complete 
deletion of AZFb (48,49). Proposed explanations for the 
unusual phenotypes include different Y-chromosome 
backgrounds and different breakpoints leading to a smaller 
deletion. Such a breakpoint (P4/proximal P1 deletion) could 
possibly spare some AZFb gene copies including XKRY, 
CDY2 and HSFY leading to a less severe phenotype (21).

AZFbc

Although it was originally proposed that AZFb and 
AZFc were discrete regions of MSY, further molecular 
characterization of the deletions revealed that AZFb and 
AZFc were in fact overlapping (21,22). AZFb and AZFbc 
deletions have been suggested to be caused by at least three 
different deletion patterns—the P5/proximal P1 leading to 
the complete deletion of AZFb, and two AZFbc deletion 
patterns: P5/distal P1 and P4/distal P1 (46,47). AZFbc 
deletions cause the loss of 7.7 Mb and 42 copies removed 
or 7.0 Mb and 38 copies removed, respectively, and occur 
at a frequency of 1–3% of Yq-microdeletions (21,42,47). 
Similar to AZFb deletions, AZFbc deletions lead to 
SCOS and azoospermia, therefore, TESE is generally not 
recommended, as the chances of finding spermatozoa is low 
(13,24,25,50).

AZFc

AZFc deletions are the most frequent Y-chromosome 
microdeletion type (~80%) (21,42). The deletion originates 
from the homologous recombination of the 229 kb direct 
repeats b2 (in P3) and b4 (in P1), and deletes 3.5 Mb 
including 21 gene copies and transcription units (46). 
Unlike the complete deletions above, complete AZFc 
deletions have been associated with a variety of clinical 
and histological phenotypes, ranging from azoospermia 
to residual spermatogenesis and oligozoospermia (51-54).  
In complete AZFc deletions leading to azoospermia, there 
is a 50% chance of spermatozoa retrieval with TESE. 
Success rate depends on technique and ranges from 9% to 
as high as 80% with micro-TESE (24,26,43,53,55-64). In 
addition, since progressive decreases of sperm production 
have been reported in the literature, men found to have 
oligozoospermia and AZFc deletions should be offered 
preventive sperm cryopreservation at time of diagnosis 
(13,21). Male offspring from men with AZFc deletions will 
also host a similar or larger AZFc deletion, making genetic 
counseling for these families an integral part of their care 
(65-70).

Although partial deletions in AZFa and AZFb regions 
are rare, AZFc is particularly susceptible to partial deletions 
caused by NAHR events (46,71,72). Of the various 
deletions reported in the literature, gr/gr deletions seem 
to be of clinical interest (21,73). This partial deletion 
removes approximately half of the AZFc region affecting 
nine transcription units (42). The reported effects of gr/gr  
deletions are highly dependent on the ethnic and 
geographic origin of the studies. Carriers of gr/gr deletions 
have been reported to exhibit phenotypes ranging from 
azoospermia to normozoospermia (73-79). Moreover, gr/gr 
deletions have been postulated as a risk factor for testicular 
germ cell tumors (TGCT) (80). A 2019 European study 
found a predisposing effect of gr/gr deletion to TGCT as 
an independent factor and recommended regular tumor 
screening in infertile gr/gr deletion carriers and male family 
members of TGCT patients with gr/gr deletions (81).

Genetic testing

The testing for AZF deletions is recommended by the 
American Urology Association (AUA) as part of the routine 
diagnostic workup of men with azoospermia and severe 
oligozoospermia (less than 5 million sperm per ml) (13,82). 
Current and possible future techniques are described below.
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Multiplex-polymerase chain reaction (PCR)

Multiplex-PCR is the current gold standard testing modality 
for Y-microdeletions, and is used to amplify small portions 
of each region, with losses reported only as AZFa, AZFb 
and/or AZFc deletions (4,47,83,84). The 2013 EAA and 
EMQN guidelines standardized and reported in detail the 
molecular diagnosis of Y-microdeletions (21). It reported no 
increase in detection rate with the use of sequence-tagged 
site primers (STS) specific for discrete genes. STS primers 
that amplify anonymous MSY regions can be used to the 
same effect (63,83,85,86).

The use of multiplex-PCR allows for an internal control 
(ZFX/ZFY gene; present in both male and female DNA) 
to differentiate a negative result from technical failure. 
In addition, a DNA sample from a male with normal 
spermatogenesis should be used as a positive control (21). 
Although the analysis of a single non-polymorphic STS 
is theoretically sufficient, analysing two STS loci in each 
region reinforces diagnostic accuracy (21).

Array comparative genomic hybridization (aCGH)

Copy number variations (CNVs) are phenomena in which 
sections of the genome are deleted or duplicated, leading 
to different number of repeats between two compared 
individuals. Through combining fluorescently labelled 
DNA from two individuals (patient and control), aCGH 
can detect CNVs. aCGH involves running the hybridized 
DNA on custom microarrays that enable the quantification 
of DNA copy numbers for each probe from each individual. 
High-resolution aCGH (that employs multiple probes) 
allows detection of CNVs as small as 60 base pairs (4). 
When compared to PCR, high-resolution aCGH identified 
CNVs in 11% in a study of 104 infertile men, half of 
which were missed by traditional multiplex-PCR (4,87). 
Limitations of aCGH as it relates to Y-microdeletions 
are specific to CNVs, since CNVs do not necessarily 
equate gene expression. Partial duplications can also 
cause decreased expression through gene disruption (4). 
Moreover, the per-sample cost of aCGH is currently double 
that of multiplex-PCR, however that is expected to drop 
over time and, combined with the greater diagnostic yield, 
it is reasonable to expect its future use as a diagnostic tool 
for Y-microdeletions (87).

Next generation sequencing (NGS) technologies

NGS involves the rapid parallel sequencing of short DNA 
fragments and their subsequent alignment to a reference 
gene/genome (4). Three general categories of NGS exist: 
disease targeted sequencing, whole exome sequencing, 
and whole genome sequencing. A recently developed 
panel for male/female infertility genes resulted in ~100% 
accuracy in diagnosing single nucleotide variations, CNVs, 
insertion/deletions, sex chromosome aneuploidies (94% 
accuracy for Y-microdeletions), and CFTR gene thymidine 
tract length quantification, at the cost of $599 USD 
(4,88). Comparatively, karyotyping, CFTR sequencing 
and multiplex-PCR testing for Y-microdeletions could 
cost several thousand dollars though it is uncommon for 
all three tests to be ordered concurrently for the same 
patient. Moreover, the ability to use benchtop sequencers 
for disease-targeted sequencing means that NGS can be 
available at smaller laboratories, facilitating its adoption as a 
clinical diagnostic tool (4).

Compared to disease-targeted sequencing, whole exome 
sequencing identifies tens of thousands of variants more. 
In whole exome sequencing, only ~2% of the genome is 
sequenced, however about 85% of the known mutations 
causing diseases in humans are covered (4,89). A limitation 
of whole exome sequencing is overlooking the intergenic 
regions, the roles of which in human disease are more 
frequently becoming recognized (4). Whole genome 
sequencing on the other hand, identifies 3 to 4 million more 
variants than disease-targeted and whole exome sequencing. 
The costs of whole genome/exome sequencing was initially 
prohibitive, costing tens of thousands of dollars, however, 
several start-up biotechnology firms have begun to offer this 
testing for as little as a few hundred dollars. The accuracy 
of these private firm tests is difficult to assess though (90). 
Furthermore, given the significant repetitive sequences 
on the Y-chromosome, conventional short-read NGS 
poses challenges for the Y-chromosome. As new long-read 
sequencing platforms are being developed and adopted, 
novel diagnostics may become available for Y-chromosome 
abnormalities.

Conclusions

Y-microdeletions are the second most common genetic 



1387Translational Andrology and Urology, Vol 10, No 3 March 2021

  Transl Androl Urol 2021;10(3):1383-1390 | http://dx.doi.org/10.21037/tau-19-599© Translational Andrology and Urology. All rights reserved.

cause of male infertility after Klinefelter syndrome. Most 
of the Yq microdeletions resulting in azoospermia or 
severe oligozoospermia occur in the AZF regions, which 
contain genes critical for spermatogenesis. As such, genetic 
testing for AZF deletions has become part of the routine 
diagnostic workup of men with azoospermia or severe 
oligozoospermia. Testing for Y-microdeletions has proven 
important not only for the counselling of our patients 
about potential treatment options but also for discussion 
regarding potential effects on future generations.
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