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Background: Urologists face a dilemma when deciding whether prostate biopsy is required for patients 
with prostate-specific antigen (PSA) levels in the grey zone (4 to 10 ng/mL).
Methods: We retrospectively analyzed data from consecutive patients with PSA levels in grey zone, who 
underwent targeted multiparametric magnetic resonance imaging (MP-MRI)/transrectal ultrasound (TRUS) 
fusion biopsy with elastography between November 2017 and December 2019 in our hospital. The patientse data 
including age, PSA, fPSA (free PSA), fPSA/PSA, PSA density (PSAD), prostate volume, elastography Q-analysis 
score (EQS), and prostate imaging-reporting and data system (PI-RADS) score were collected. The nomogram 
was built using logistic regression and the final cohort of patients was randomly divided into a training cohort (70%) 
and a validation cohort (30%) by R software. The models were evaluated by receiver operating characteristic 
curve (ROC) analysis and calibration curve analysis. The nomogram was constructed from the best model.
Results: The final study cohort consisted of 155 patients (training cohort, 109 patients; validation cohort, 
46 patients) with PSA in the grey zone, of which 36 patients were pathologically diagnosed with PCa. The 
EQS model, −EQS model, +EQS model were built. The +EQS model that consisted of fPSA/PSA, EQS, 
and PI-RADS score had the best PCa diagnostic accuracy (development and validation, 0.783 and 0.781) and 
probability score (development and validation, 0.939 vs. 0.622). The new nomogram based on this model was 
constructed, in which fPSA/PSA ratio had the largest impact, followed by PI-RADS and EQS. 
Conclusions: Elastography and pre-biopsy MP-MRI has clinical significance for patients with PSA in the 
grey zone. The new nomogram, which is based on pre biopsy data including serological analysis, PI-RADS 
score, and EQS, can be helpful for clinical decision-making to avoid unnecessary biopsy.
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Introduction

Prostate cancer (PCa) is the most commonly diagnosed 
cancer and the second highest leading cause of cancer 
mortality in men (1,2). The prostate-specific antigen (PSA) 
blood test is widely used as a PCa screening tool (1,3); a 
serum PSA level higher than 4 ng/mL necessitates biopsy (4).  
However, only 26% of men whose PSA levels are in the 
“grey zone” (4 to 10 ng/mL) are diagnosed with PCa (5).  
Therefore, large numbers of patients suffer through 
unnecessary biopsies (6-8). Urologists face a dilemma when 
deciding whether biopsy is required for patients with PSA 
levels in the grey zone (referred to as grey zone patients). 

Studies have shown that multiparametric magnetic 
resonance imaging (MP-MRI)/transrectal ultrasound 
(TRUS) fusion biopsy has good prospects for clinical 
application in targeted prostate biopsy (9-12); it combines 
the advantages of MRI as an effective imaging method to 
detect PCa (13), with the real-time dynamic characteristics 
of TRUS and its ability to position the target to achieve 
precise biopsy sampling. In a study that included 39 grey 
zone patients, researchers found that MP-MRI/TRUS fusion 
targeted biopsy improved the rate of PCa diagnosis (14).  
However, PCa risk prediction was not assessed due to the 
small sample size. Niu et al. proposed an effective prediction 
model to diagnose high-grade prostate cancer (HGPCa) in 
grey zone patients based on MP-MRI (15); but the study 
included only one imaging method (MRI) and the result 
was not externally validated. Fang et al. proposed a ‘prostate 
volume + age + magnetic resonance imaging + digital rectal 
examination (PAMD)’ score based on 345 grey zone cases, and 
the model showed good predictive accuracy for HGPCa (16).  
Other prediction models for grey zone patients have been 
proposed in Japan, USA, and Korea (17-19). Although 
MRI-based prediction models in the above studies (15-19)  
have shown good PCa predictive ability for PSA grey zone 
patients, the modalities have some limitations (20), such 
as lower specificity; benign lesions, such as prostatitis, 
scarring, high-grade prostatic intraepithelial neoplasia, 
and hyperplasia, display PCa characteristics on MRI. In 
addition, there could be inter-observer inconsistencies in 
MRI (21-23).

Numerous studies have shown that ultrasound (US) 
elastography can improve the accuracy of PCa diagnosis 
(24-29), by evaluating the stiffness of the lesion (30) and 
guiding the targeted biopsy (29,31). To date, a prediction 
model that combines lesion elasticity with MP-MRI and 
clinical data in men with PSA grey zone levels has not been 

reported.
Our study aims to develop and validate a diagnostic 

prediction model for PCa to be used in conjunction with 
pre-biopsy MP-MRI/TRUS fusion, based on clinical 
indicators, MP-MRI, elastography and other possible risk 
factors. This would reduce the physical and psychological 
burden on patients, and the reduction in unnecessary 
medical procedures would bring down the cost of 
healthcare, benefitting society at large.

We present the following article in accordance with the 
TRIPOD reporting checklist (available at http://dx.doi.
org/10.21037/tau-20-1154).

Methods

Patient selection

This retrospective study was approved by the institutional 
review board of Shenzhen People’s Hospital, and all patients 
provided informed consent. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). In the initial cohort, we included consecutive patients 
who underwent prostate biopsy in department of ultrasound 
from November 2017 to December 2019. Patients with 
incomplete or ambiguous clinical data were excluded, e.g., 
outside the grey zone, no age, no fPSA, no targeted MP-
MRI/TRUS fusion biopsy, no EQS. The final cohort of 155 
patients was randomly divided into a training cohort (70%) 
and a validation cohort (30%) by R software. The inclusion 
criteria were as follows: serum PSA level in grey zone (4 
to 10 ng/mL), available pathological results, and no other 
prior treatment.

Multiparametric magnetic resonance imaging 

MP-MRI was acquired by 3.0 T Skyra ultra-high field 
magnetic resonance scanner (Siemens Germany), using 
18-channel body matrix coil. The patients were instructed 
to urinate a small amount, and were scanned approximately 
1 cm above the pubic symphysis. The scanning range 
included at least the prostate and the seminal vesicle. 
Imaging included T2-weighted imaging (T2WI) sequence 
(including the cross section, sagittal plane, and coronal 
plane), diffusion-weighted imaging (DWI) generated by 
single-shot spin echo planar imaging (SS-EPI) sequence, 
and dynamic contrast-enhanced MRI (DCE-MRI) was 
generated by fat-suppressed T1-weighted imaging (T1WI) 
sequence with 3D spoiled gradient echo, after rapid 
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intravenous injection with gadopentetate dimeglumine  
(0.2 mmol/kg). 

An experienced radiologist blinded to patient clinical 
manifestations and auxiliary diagnostic results reported their 
evaluations using the prostate imaging-reporting and data 
system version 2 (PI-RADS v2) (32). Based on the apparent 
diffusion coefficient (ADC) map and T2WI, the suspicion 
levels of PCa with clinical significance was scored from 
I to V as follows: (I) extremely unlikely to be malignant; 
(II) unlikely to appear; (III) ambiguous; (IV) malignancy 
possibly exists; and (V) malignancy likely exists. A maximum 
of two index lesions were chosen per each patient. Only 
ADC maps were used for image registration, regardless of 
the location of the index lesion.

Ultrasound

The GE Logiq E9 ultrasound system (GE Healthcare, 
Milwaukee, USA) with volume navigation and elastography 
functions was used. Patients underwent an enema cleansing 
before the examination. The left lateral position was 
adopted, and the hip and the knees were bent. Patients were 
instructed to relax and take a deep breath. The probe was 
inserted gently into the anus. First, the size of the prostate 
was measured. The operator then focused on whether the 
shape of the prostate was regular, whether the outline was 
smooth or rough, and whether an abnormal echo area was 
present. The blood flow status was evaluated using color 
Doppler flow imaging, with a focus on determining the 
presence or absence of focal blood-rich areas. 

Volume navigation

Volume navigation, or the fusion imaging technique, 
used an electromagnetic field tracking system with an 
electromagnetic transmitter adjacent to the patient, and 
electromagnetic sensors, or trackers, attached to the US 
transducer. A fully integrated position sensor unit installed 
in the US machine received the location data from the 
sensors. Prior to examination, the axial MP-MRI DICOM 
files were uploaded to the US machine. Image registration 
between the MP-MRI and US images was necessary in 
order to fuse both images correctly. Image registration 
consisted of plane-to-plane registration, followed by point-
to-point registration. All registrations were performed in 
the axial plane. First, we used muscoli puborectalis as the 
primary plane for registration; then, based on patients’ 
conditions, different points such as cysts and urethral 

orifices were selected. Subsequently, the MR images of 
the reference plane and selected points were matched in 
the overlay mode to increase observational accuracy. After 
image registration, the images obtained from TRUS and 
MRI were displayed in a side-by-side format (Figure 1A) 
and overlay status (Figure 1B).

Elastography

Elastographic mode was used to examine suspicious lesions 
discovered by volume navigation. The region of interest 
(ROI) was defined as the half side of the gland where the 
lesion was located (28,29). A dual-display screen was used 
to simultaneously observe grayscale ultrasound and elastic 
images (Figure 1C). The suspicious lesion was displayed in 
the center of the screen and vertical targeted pressure was 
applied. The dynamic elastography images were stored and 
analyzed with the elastographic Q-analysis score (EQS) 
software preset on the equipment. The EQS analysis curve 
was kept straight as far as possible (fluctuation range of less 
than 1), to standardize the quality of image. EQS analysis 
software was used for calculating the mean EQS (Figure 1D). 

Prostate biopsy

The targeted biopsy was performed with a GE Logiq E9 
US machine equipped with a 7–9 MHz multi-frequency 
IC5-9-D endocavitary probe by the same sonographer who 
had conducted the MP-MRI/TRUS image fusion. Local 
anesthesia (lidocaine, 10 mL) was administered before 
each biopsy. The probe was equipped with a 5° puncture 
trestle. An 18-gauge, 20 cm automatic cutting needle and 
an automated biopsy gun (ACECUT, TSK Laboratory, 
Tochigi, Japan) were used. Under the guidance of the fused 
MRI-US images, two biopsy cores per suspicious lesion were 
sampled (Figure 1E). After targeted biopsies, the systematic 
prostate biopsy sampling twelve cores was performed; this 
included obtaining from each side of the gland two cores 
from the base, two cores from the middle, and two cores 
from the apex. The reference standard was core–based 
biopsy pathologic results. The Gleason score (GS) for each 
core was reported by a genitourinary pathologist who was 
blinded to the clinical results (Figure 1F).

Study variables and statistical analysis

The following clinical, MP-MRI and US variables were 
included in this study: age, PSA, fPSA (free PSA), fPSA/
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Figure 1 A 60-year-old patient (PSA =6.09 ng/mL, fPSA =0.48 ng/mL, fPSA/PSA =0.079, TRUS-derived prostate volume =20.8 cm3, 
PSAD =0.29 ng/mL/cm3) had a pre-biopsy MRI that detected an abnormal signal area of about 14 mm × 10 mm at the right transition zone 
of the prostate; the PI-RADS score was 4. (A) Image registration of ADC-US fusion; (B) the overlay image of the ADC-US fusion; (C) 
elastography detected the suspicious zone with increased stiffness, which was previously detected by MRI; (D) the EQS of the suspicious 
zone was 2.3; (E) targeted biopsy of the lesion detected by MRI and elastography; (F) targeted biopsy result was positive for PCa (HE 
staining, ×40), with a GS of 7 (3+4) and classified as group 2 according to the WHO/ISUP classification system.

PSA, PSA density (PSAD) calculated by PSA divided by 
TRUS-derived prostate volume, TRUS-derived prostate 
volume, EQS, PI-RADS score, and GS. The TRUS-
derived prostate volume was calculated by multiplying 0.52 
with the diameters of the prostate gland obtained from 
three different axes (up-down, left-right, and front-rear). 
In the case of multiple PSA tests, the result closest to the 
biopsy date was used. If the patient had multiple lesions, the 
highest GS was used. Patients with incomplete reports were 
excluded from the study.

Statistical analysis was performed using RStudio v1.1 
(SAS Institute, Inc., Cary, USA). The significance level 
was set at P=0.05. A normality test was performed for 
each variable. If it followed a normal distribution, it was 
represented by mean ± standard deviation (SD). If not, the 
median and the interquartile range (IQR) were reported. 

The optimal variables from the training cohort were 
selected by least absolute shrinkage and selection operator 
(LASSO) regression and cross-validation. LASSO is the 
most famous method for analyzing survival data, also 
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suitable in logistic regression (33,34). We constructed 
LASSO regression models using the glmnet R package. The 
value of the tuning parameter (or, penalization coefficient) 
λ of the generated model was negatively associated with the 
complexity of the model and the value of deviance. When 
the value of the λ increased from left to right, the number 
of non-zero coefficients increased accordingly. The optimal 
value of λ (that is, the minimum average binomial deviance) 
was determined by 10-fold cross-validation via minimum 
criteria. This value was then used to select the optimal 
clinical predictors.

Using these predictors with age, PSA, fPSA, fPSA/PSA, 
PSA density (PSAD), TRUS-derived prostate volume, 
EQS, and PI-RADS score, multiple logistic regression 
analysis was performed to generate prediction models. 
The logistic regression model was adopted to determine 
a patient-specific clinical signature, which is a linear 
combination of selected features with their respective 
weights. Next, the clinical signature was evaluated for its 
diagnostic ability and calibrated using both the training and 

validation cohorts. Diagnostic ability was determined by 
the area under the ROC curve (AUC) values of the receiver 
operating characteristic (ROC) curves constructed for each 
model. Calibration, the degree of concordance between 
the probability predicted by the model and the observed 
probability in our sample, was examined by plotting the 
observed values against the predicted values. The apparent 
trend was analyzed by both linear logistic regression and 
non-parametric (LOESS) regression, the latter of which 
allows for any non-linearity in the trend (35). 

Nomogram

A nomogram was constructed from the optimal model, 
using the R package “rms”. The nomogram is used by 
locating a patient’s position for each variable on the 
horizontal scale. A point value is assigned according to the 
point scale (top axis) and summed for all variables. The total 
points correspond to a probability value for having PCa.

Results

Selection of diagnostic parameters

A total of 473 patients who had undergone prostate 
biopsy were initially included in this study (Figure 2). 
After applying the exclusion criteria, the final study cohort 
consisted of 155 patients with PSA in the grey zone. 
The baseline clinical characteristics of these patients are 
presented in Table 1. The final cohort was further divided 
into a training cohort (109 cases) and a validation cohort (46 
cases). The data on the following 8 clinical characteristics 
were extracted from the final cohort: age, PSA, fPSA, fPSA/
PSA, PSAD, TRUS-derived prostate volume, EQS, and 
PI-RADS score. The 10-fold cross-validation yielded the 
optimal value of λ=0.03939082, and thus log (λ) =−3.234222 
(Figure 3A). The subsequent LASSO regression analysis 
resulted in three non-zero features (Figure 3B), namely 
fPSA/PSA, PI-RADS and EQS.

Models

Multivariate logistic regression analysis revealed that 
fPSA/PSA, EQS, and PI-RADS score were independent 
predictors of PCa in grey zone patients (Table 2); we named 
this the “+EQS model” (Figure 4). In addition, in order to 
verify the necessity of EQS for PCa prediction, we created 
the following two models: the “EQS model” that depended 

Figure 2 Study flow chart.

473 men underwent 
TRUS prostate 

biopsy 
11/2017–12/2019

197 men underwent 
IRUS prostate biopsy 

with grey zone

Final cohort: 155 men 
with grey zone underwent 

lRUS-MRI fusion 
targeted biopsy

276 men excluded for PSA 
without the grey zone

16 men excluded for no 
age, fPSA results

4 men excluded for no 
MRI-TRUS fusion 
targeted biopsy

22 men excluded for no 
EQS reults

Raining cohort 
109 cases

Validation cohorts 
46 cases
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solely on EQS, and the “-EQS model”, which depended on 
fPSA/PSA and PI-RADS score (Table 2) (Figures 5,6). 

Model development

The cut-off values of the 3 models were determined 
based on the ROC curve with consideration to a tradeoff 
between diagnostic sensitivity and specificity. The cut-off 
values of the +EQS model, EQS model, −EQS model are 

0.178, 0.210, and 0.219, respectively; and their AUC values 
(measurement of diagnostic accuracy) are 0.783, 0.649, and 
0.760, respectively (Figures 4A,5A,6A). The calibration plots 
of the models using the training cohort showed that the 
probability estimates (p) for accurate PCa diagnosis for the 
+EQS model, EQS model, −EQS model were 0.939, 0.997, 
and 0.921, respectively (Figures 4B,5B,6B), indicating good 
agreement with clinical findings.

Model validation

Using data from the validation cohort, we performed 
ROC curve analysis for our three models. The cut-off 
values of +EQS model, EQS model, −EQS model were 
found to be 0.318, 0.238, and 0.253, respectively, and their 
AUC values were 0.781, 0.670, and 0.790, respectively 
(Figures 4C,5C,6C). The −EQS model and +EQS model 
demonstrated good diagnostic accuracy. The calibration 
of the models revealed that +EQS model had the highest 
probability for diagnosing PCa (P=0.622; Figure 4D); 
followed by the EQS model (P=0.608; Figure 5D), and the −
EQS model had the lowest probability (P=0.368; Figure 6D).  
Overall, +EQS model has the best ability to predict PCa in 
grey zone patients. 

Nomogram

We constructed a new nomogram based on the +EQS 
model (fPSA/PSA + EQS + PI-RADS score; Figure 7). 
Within the model, fPSA/PSA ratio had the largest impact, 
followed by PI-RADS score, and finally EQS. Lower fPSA/
PSA ratio, higher PI-RADS score, and higher EQS were 

Table 2 Multivariate logistic regression modeling for predicting 
prostate cancer

Model OR (95% CI) P value

+EQS model

(Intercept) 0.01 (0.00, 0.15) 0.001

fPSA/PSA 0.00 (0.00, 0.14) 0.026

EQS 1.70 (1.03, 2.87) 0.040

PI-RADS score 3.09 (1.64, 6.32) 0.001

EQS model

(Intercept) 0.11 (0.04, 0.29) <0.001

EQS 1.78 (1.15, 2.79) 0.010

−EQS model

(Intercept) 0.02 (0.00, 0.19) 0.002

fPSA/PSA 0.00 (0.00, 0.50) 0.044

PI-RADS score 3.42 (1.86, 6.89) <0.001

OR, odds ratio; CI, confidence interval; PSA, prostate-specific 
antigen; fPSA, free PSA; EQS, elastographic Q-analysis score; 
PI-RADS, prostate imaging-reporting and data system.

Figure 3 The 10-fold cross-validation and LASSO regression to select the optimal variables for prostate cancer prediction model for grey 
zone patients. Lambda: λ. (A) The 10-fold cross-validation process was repeated to select the optimal penalization coefficient λ. The value 
of λ yielded the minimum average binomial deviance that was used to select features; (B) as a result, LASSO coefficient profile plot of the 8 
features against log (λ).
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Figure 4 Receiver operating characteristic (ROC) curves and calibration curves of the three prediction models using the training cohort and 
the validation cohort. The ROC curves of development (A) and validation (C) of the +EQS model. The calibration curves of development (B) 
and validation (D) of the +EQS model.

Figure 5 Receiver operating characteristic (ROC) curves and calibration curves of the three prediction models using the training cohort and 
the validation cohort. The ROC curves of development (A) and validation (C) of the EQS model. The calibration curves of development (B) 
and validation (D) of the EQS model. AUC, the area under the ROC curve.
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proven to be predictive factors for PCa.

Discussion

The technique of targeted MP-MRI/TRUS fusion biopsy 
is of broad and current interest; it is supported by the joint 
consensus of the Society of Abdominal Radiology and the 
American Urological Association (36). The targeted biopsy 
of suspicious lesions in patients with PSA >4 ng/mL has 
also been successfully performed by many other clinical 
applications (37-39). But a considerable number of patients 
with PSA in the grey zone have undergone excessive 
intervention. A previous study found that the majority of 
grey zone patients (74%) who had been biopsied had benign 
lesions (5). This is similar to our observations in the present 
study, where 77% (119/155) of the patients had benign 
lesions. To reduce the number of unnecessary biopsies 
in the grey zone patient cohort, we established 3 cancer 
prediction models based on clinical features that were 
internally validated. Based on the evaluation of diagnostic 
accuracy and probability, we found that the +EQS model, 
which is composed of fPSA/PSA, EQS, and PI-RADS 
score, was reliable.

The +EQS model is different from previously proposed 
prediction models (15-19). This is to be expected, 
since such models are sensitive to differences in patient 
demographics, sample size, and the nature and type of 
independent and dependent variables included in the study 
design. For example, PSAD in the model by Niu et al. (15) 
was calculated based on MRI, but the PSAD in our model 
was calculated based on TRUS. This is also why we did 
not validate the previously reported nomograms using our 
validation cohort data. 

The model proposed in the present study indicates that 
the PI-RADS score is helpful when deciding on biopsy in 
grey zone patients; this highlights the significance of the 
pre-biopsy MRI. Furthermore, the fusion of MRI and 
US techniques to facilitate targeted biopsy can greatly 
reduce the damage caused by repeated biopsy (11,40-42).  
However, the inter-observer consistency could affect 
the success of targeted MP-MRI/TRUS fusion biopsy. 
This study also showed that fPSA/PSA ratio is an 
integral predictor within the model. This is similar to 
the previous study by Kawamura et al. (17). However, 
some studies (43,44) point out that PSAD or fPSA values 
are more useful than fPSA/PSA in the grey zone patient 

Figure 6 Receiver operating characteristic (ROC) curves and calibration curves of the three prediction models using the training cohort and 
the validation cohort. The ROC curves of development (A) and validation (C) of the −EQS model. The calibration curves of development (B) 
and validation (D) of the −EQS model. AUC, the area under the ROC curve.
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cohort. This is possibly because previous studies were 
based on serological inspection alone, or in combination 
with MRI findings. In the present study, the small sample 
size and EQS might have weakened the effects of fPSA 
and PSAD.

The highlight of this study is the application of 
elastography for improving diagnostic accuracy in grey 
zone patients; thereby, making full use of the advantages 
of US in analyzing prostate lesions. The application of 
elastography in prostate disease has been controversial 
(28,29,45-47), possibly due to differences in ROI settings 
and probe pressure methods (28,29). The World Federation 
for Ultrasound in Medicine and Biology (WFUMB) 
guidelines recommend that in the unfused state the elastic 
ROI should include the entire gland (48). Ding et al. (28,29) 
chose to apply vertical targeted pressure to the location of 
the suspicious lesion under fusion imaging, and the ROI 
included just the hemilateral glands. Such targeted pressure 
could reduce the interference by the area of pseudosclerosis 
in the prostate peripheral zone, which greatly improved 
the diagnostic accuracy. Their results showed that the use 
of elastography to diagnose PCa had a threshold value 
of 1.95, sensitivity of 83.5%, specificity of 84.4%, and an 
AUC of 0.870. However, in this study, the AUC values of 
the EQS model were 0.649 and 0.670 in the two cohorts, 
and EQS made the smallest contribution in the final 
nomogram. While it is possible that the majority of PCa 
patients with PSA in the grey zone (63%) have low GS 
(3+3 or 3+4) (49,50), EQS could still perform outstandingly 

well in diagnosing PCa in this patient subgroup, as 
indicated by the increase in the AUC value upon including 
EQS as a predictor during model development (−EQS 
model vs. +EQS model, 0.760 vs. 0.783). This is the first 
study to include EQS in a cancer prediction model for 
patients with PSA in the grey zone. This is significant for 
clinical decision-making. Additionally, elastography could 
complement MRI, to reduce the misdiagnoses arising from 
the use of single imaging modality. EQS analysis software 
was not only used for calculating the mean EQS, but can be 
used as quality control method as well. The EQS analysis 
curve was kept as straight as possible (fluctuation range of 
less than 1). In this way we standardize the quality of image 
to train the different operators. 

The limitations of this study include those inherent to 
the retrospective study design, such as excluding potentially 
important variables [e.g., free-to-total PSA/PSAD (51)], 
and there may be a risk of selection bias. In addition, the 
sample size was small and the EQS function is specific to 
one instrument. We were unable to externally validate our 
model due to the major influence of the type of pressure 
method used during US. Additionally, the experienced 
skill of elastography is required and others’ results may 
not be reproducted. In the future, additional data will be 
required to improve the internal validation of the model, 
or a multicenter study could be undertaken to verify the 
robustness of the model verify the robustness of the model 
it. Other parameters could be added to the model further 
optimize it.

Figure 7 Nomogram based on the predictive +EQS model (fPSA/PSA, EQS, PI-RADS score) for diagnosing PCa in PSA grey zone 
patients. PSA, prostate-specific antigen; fPSA, free PSA; EQS, elastographic Q-analysis score; PI-RADS, prostate imaging-reporting and 
data system.
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Conclusions

This study shows that pre-biopsy MRI and elastography has 
clinical significance for patients with prostate lesions and 
PSA levels in the grey zone. The nomogram based on fPSA/
PSA, EQS, and PI-RADS score can be helpful for clinical 
decision-making to reduce the number of unnecessary 
biopsies.

Acknowledgments

Funding: This work was supported by the National Natural 
Science Foundation of China (Grant No. 81771841) and 
the Guangdong Medical Science and Technology Research 
Fund Project (Grant No. B2019112).

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD reporting checklist. Available at http://dx.doi.
org/10.21037/tau-20-1154

Data Sharing Statement: Available at http://dx.doi.
org/10.21037/tau-20-1154

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at http://dx.doi.
org/10.21037/tau-20-1154). The authors have no conflicts 
of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. This retrospective 
study was approved by the institutional review board of 
Shenzhen People’s Hospital, and all patients provided 
informed consent. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Xiang J, Yan H, Li J, et al. Transperineal versus transrectal 
prostate biopsy in the diagnosis of prostate cancer: a 
systematic review and meta-analysis. World J Surg Oncol 
2019;17:31.

2.	 Siegel RL, Miller KD, Jemal A. Cancer statistics. CA 
Cancer J Clin 2019;69:7-34.

3.	 Shao N, Zhu Y, Ye D. Role of polygenic hazard score in 
prostate-specific antigen (PSA) screening for prostate 
cancer. Transl Cancer Res 2018;7:S743-4.

4.	 Catalona WJ, Hudson MA, Scardino PT, et al. Selection of 
optimal prostate specific antigen cutoffs for early detection 
of prostate cancer: receiver operating characteristic curves. 
J Urol 1994;152:2037-42.

5.	 Stamey TA. Second Stanford conference on international 
standardization of prostate-specific antigen immunoassays. 
Urology 1995;45:173-84.

6.	 Welch HG, Fisher ES, Gottlieb DJ, et al. Detection 
of prostate cancer via biopsy in the Medicare-SEER 
population during the PSA era. J Natl Cancer Inst 
2007;99:1395-400.

7.	 Graif T, Loeb S, Roehl KA, et al. Under diagnosis and 
over diagnosis of prostate cancer. J Urol 2007;178:88-92.

8.	 Singh J, Sohal SS, Lim A, et al. Cytokines expression 
levels from tissue, plasma or serum as promising 
clinical biomarkers in adenocarcinoma of the prostate: 
a systematic review of recent findings. Ann Transl Med 
2019;7:245.

9.	 Shoji S. Magnetic resonance imaging-transrectal 
ultrasound fusion image-guided prostate biopsy: Current 
status of the cancer detection and the prospects of tailor-
made medicine of the prostate cancer. Investig Clin Urol 
2019;60:4-13. 

10.	 Shah PH, Patel VR, Moreira DM, et al. Implementation of 
multiparametric magnetic resonance imaging technology 
for evaluation of patients with suspicion for prostate cancer 
in the clinical practice setting. BJU Int 2019;123:239-45.

11.	 Yarlagadda VK, Lai WS, Gordetsky JB, et al. MRI/US 
fusion-guided prostate biopsy allows for equivalent cancer 
detection with significantly fewer needle cores in biopsy-
naive men. Diagn Interv Radiol 2018;24:115-20.

12.	 Mendhiratta N, Rosenkrantz AB, Meng X, et al. Magnetic 
resonance imaging-ultrasound fusion-targeted prostate 
biopsy in a consecutive cohort of men with no previous 
biopsy: reduction of over-detection through improved risk 
stratification. J Urol 2015;194:1601-6.

13.	 Mottet N, van der Bergh RCN, Briers E, et al. European 

http://dx.doi.org/10.21037/tau-20-1154
http://dx.doi.org/10.21037/tau-20-1154
http://dx.doi.org/10.21037/tau-20-1154
http://dx.doi.org/10.21037/tau-20-1154
http://dx.doi.org/10.21037/tau-20-1154
http://dx.doi.org/10.21037/tau-20-1154
https://creativecommons.org/licenses/by-nc-nd/4.0/


2190 Ding et al. MP-MRI/TRUS fusion based nomogram for predicting prostate cancer

  Transl Androl Urol 2020;9(5):2179-2191 | http://dx.doi.org/10.21037/tau-20-1154© Translational Andrology and Urology. All rights reserved.

Association of Urology prostate cancer guidelines. 
Available online: http://uroweb.org/guideline/prostate-
cancer/.

14.	 Hwang SI, Lee HJ, Lee SE, et al. Value of MR-US fusion 
in guidance of repeated prostate biopsy in men with 
PSA<10ng/mL. Clin Imaging 2019;53:1-5. 

15.	 Niu XK, Li J, Das SK, et al. Developing a nomogram 
based on multiparametric magnetic resonance imaging 
for forecasting high-grade prostate cancer to reduce 
unnecessary biopsies within the prostate-specific antigen 
gray zone. BMC Medical Imaging 2017;17:11.

16.	 Fang D, Ren D, Zhao C, et al. Prevalence and risk 
factors of prostate cancer in Chinese Men with PSA 
4-10 ng/mL who underwent TRUS-guided prostate 
biopsy: the utilization of PAMD score. Biomed Res Int 
2015;2015:596797.

17.	 Kawamura K, Suzuki H, Kamiya N, et al. Development 
of a new nomogram for predicting the probability of a 
positive initial prostate biopsy in Japanese patients with 
serum PSA levels less than 10ng/mL. Int J Urol 2008;15: 
598-603. 

18.	 Zaytoun OM, Kattan MW, Moussa AS, et al. Development 
of Improved Nomogram for Prediction of Outcome of 
Initial Prostate Biopsy Using Readily Available Clinical 
Information. Urology 2011;78:392-8.

19.	 Jeong IG, Lim JH, Kim SC, et al. Nomogram using 
transrectal ultrasound-derived information predicting the 
detection of high grade prostate cancer on initial biopsy. 
Prostate International 2013;1:69-75.

20.	 Panebianco V, Giganti F, Kitzing YX, et al. An update of 
pitfalls in prostate mpMRI: a practical approach through 
the lens of PI-RADS v. 2 guidelines. Insights Imaging 
2018;9:87-101.

21.	 Bjurlin MA, Renson A, Rais-Bahrami S, et al. Predicting 
Benign Prostate Pathology on Magnetic Resonance 
Imaging/Ultrasound Fusion Biopsy in Men with a 
Prior Negative 12-core Systematic Biopsy: External 
Validation of a Prognostic Nomogram. Eur Urol Focus 
2019;5:815-22.

22.	 Sonn GA, Fan RE, Ghanouni P, et al. Prostate magnetic 
resonance imaging interpretation varies substantially 
across radiologists. Eur Urol Focus 2019;5:592-9. 

23.	 Muller BG, Shih JH, Sankineni S, et al. Prostate 
cancer: interobserver agreement and accuracy with the 
revised Prostate Imaging Reporting and Data System at 
multiparametric MR imaging. Radiology 2015;277:741-50.

24.	 Tyloch DJ, Tyloch JF, Adamowicz J, et al. Elastography in 
prostate gland imaging and prostate cancer detection. Med 

Ultrason 2018;20:515-23.
25.	 Aboumarzouk OM, Ogston S, Huang Z, et al. Diagnostic 

accuracy of transrectal elastosonography (TRES) imaging 
for the diagnosis of prostate cancer: a systematic review 
and meta-analysis. BJU Int 2012;110:1414-23.

26.	 Sang L, Wang XM, Xu DY, et al. Accuracy of shear wave 
elastography for the diagnosis of prostate cancer: A meta-
analysis. Sci Rep 2017;7:1949.

27.	 Woo S, Suh CH, Kim SY, et al. Shear-Wave Elastography 
for Detection of Prostate Cancer: A Systematic Review 
and Diagnostic Meta-Analysis. AJR Am J Roentgenol 
2017;209:806-14.

28.	 Ding Z, Jiao Y, Wu H, et al. Clinical value of the 
elastographic q-analysis score in assisting real-time 
elastography-guided prostate biopsy: a retrospective study 
of 125 patients. J Ultrasound Med 2020;39:83-7.

29.	 Ding Z, Ye X, Zhang L, et al. Evaluation of the 
Performance of the Ultrasound (US) Elastographic 
Q-Analysis Score Combined With the Prostate Imaging 
Reporting and Data System for Malignancy Risk 
Stratification in Prostate Nodules Based on Transrectal 
US-Magnetic Resonance Imaging Fusion Imaging. J 
Ultrasound Med 2019;38:2991-8. 

30.	 Ophir J, Céspedes I, Ponnekanti H, et al. Elastography: a 
quantitative method for imaging the elasticity of biological 
tissues. Ultrason Imaging 1991;13:111-34.

31.	 Brock M, von Bodman C, Palisaar RJ, et al. The impact of 
real-time elastography guiding a systematic prostate biopsy 
to improve cancer detection rate: A prospective study of 
353 patients. J Urol 2012;187:2039-43.

32.	 Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS 
Prostate Imaging-Reporting and Data System: 2015, 
version 2. Eur Urol 2016;69:16-40.

33.	 Tibshirani R. The lasso method for variable selection in 
the Cox model. Stat Med 1997;16: 385-95.

34.	 Jin X, Ai Y, Zhang J, et al. Noninvasive prediction of 
lymph node status for patients with early-stage cervical 
cancer based on radiomics features from ultrasound 
images. Eur Radiol 2020;30:4117-24. 

35.	 Cleveland WS, Grosse E, Shyu WM. In: Chambers JM, 
Hastie TJ. editors, Statistical models in S, Vol Ⅱ, Local 
regression models. New York, 1992.

36.	 Rosenkrantz AB, Verma S, Choyke P, et al. Prostate 
magnetic resonance imaging and magnetic resonance 
imaging targeted biopsy in patients with a prior negative 
biopsy: a consensus statement by AUA and SAR. J Urol 
2016;196:1613-8.

37.	 Westhoff N, Siegel F, Peter C, et al. Defining the target 



2191Translational Andrology and Urology, Vol 9, No 5 October 2020

  Transl Androl Urol 2020;9(5):2179-2191 | http://dx.doi.org/10.21037/tau-20-1154© Translational Andrology and Urology. All rights reserved.

prior to prostate fusion biopsy: the effect of MRI reporting 
on cancer detection. World J Urol 2019;37:327-35.

38.	 Hakozaki Y, Matsushima H, Murata T, et al. Detection 
rate of clinically significant prostate cancer in magnetic 
resonance imaging and ultrasonography-fusion 
transperineal targeted biopsy for lesions with a prostate 
imaging reporting and data system version 2 score of 3-5. 
Int J Urol 2019;26:217-22. 

39.	 Kim YJ, Huh JS, Park KK. Effectiveness of Bi-Parametric 
MR/US Fusion Biopsy for Detecting Clinically Significant 
Prostate Cancer in Prostate Biopsy Naive Men. Yonsei 
Med J 2019;60:346-51.

40.	 Delongchamps NB, Peyromaure M, Schull A, et al. 
Prebiopsy magnetic resonance imaging and prostate cancer 
detection: comparison of random and targeted biopsies. J 
Urol 2013;189:493-9.

41.	 Puech P, Rouviã-Re O, Renard-Penna R, et al. Prostate 
cancer diagnosis: multiparametric MR-targeted biopsy 
with cognitive and transrectal US-MR fusion guidance 
versus systematic biopsy--prospective multicenter study. 
Radiology 2013;268:461-9. 

42.	 Siddiqui MM, Raisbahrami S, Turkbey B, et al. Comparison 
of MR/ultrasound fusion-guided biopsy with ultrasound-
guided biopsy for the diagnosis of prostate cancer. JAMA 
2015;313:390-7.

43.	 Catalona WJ, Partin AW, Slawin KM, et al. Use of the 
percentage of free prostate-specific antigen to enhance 
differentiation of prostate cancer from benign prostatic 
disease: a prospective multicenter clinical trial. JAMA 
1998;279:1542-7.

44.	 Zheng XY, Xie LP, Wang YY, et al. The use of prostate 

specific antigen (PSA) density in detecting prostate cancer 
in Chinese men with PSA levels of 4-10 ng/mL. J Cancer 
Res Clin Oncol 2008;134:1207-10.

45.	 Tu X, Qiu S, Chang T, et al. The role of real-time 
elastography- targeted biopsy in the detection and 
diagnosis of prostate cancer: A systematic review and meta-
analysis. Medicine (Baltimore) 2018;97:e0220.

46.	 Teng J, Chen M, Gao Y, et al. Transrectal sonoelastography 
in the detection of prostate cancers: a meta-analysis. BJU 
Int 2012;110:E614-20.

47.	 Zhang B, Ma X, Zhan W, et al. Real-time elastography 
in the diagnosis of patients suspected of having 
prostate cancer: a meta-analysis. Ultrasound Med Biol 
2014;40:1400-7.

48.	 Barr RG, Cosgrove D, Brock M, et al. WFUMB 
Guidelines and Recommendations on the Clinical Use of 
Ultrasound Elastography: Part 5. Prostate. Ultrasound 
Med Biol 2017;43:27-48.

49.	 Aigner F, Schafer G, Steiner E, et al. Value of enhanced 
transrectal ultrasound targeted biopsy for prostate cancer 
diagnosis: a retrospective data analysis. World J Urol 
2012;30:341-6.

50.	 Junker D, Schafer G, Aigner F, et al. Potentials and 
limitations of real-time elastography for prostate 
cancer detection: A whole-mount step section analysis. 
ScientificWorldJournal 2012;2012:193213.

51.	 Nan LB, Yin XT, Gao JP. Significant Diagnostic Value 
of Free-Serum PSA (FPSA)/Prostate-Specific Antigen 
Density (PSAD) and (F/T)/PSAD for Prostate Cancer of 
the Chinese Population in a Single Institution. Med Sci 
Monit 2019;25:8345-51.

Cite this article as: Ding Z, Wu H, Song D, Tian H,  
Ye X, Liang W, Jiao Y, Hu J, Xu J, Dong F. Development and 
validation of a nomogram for predicting prostate cancer in men 
with prostate-specific antigen grey zone based on retrospective 
analysis of clinical and multi-parameter magnetic resonance 
imaging/transrectal ultrasound fusion-derived data. Transl 
Androl Urol 2020;9(5):2179-2191. doi:10.21037/tau-20-1154


