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Introduction

Infertility is estimated to affect 10–15% of couples with 
male factor being the solitary cause in about 20% of those 
cases and playing a role in another 40% of cases (1-4). A 
semen analysis is the workhorse of a male factor workup 
and when a result returns with a concentration of <5 million 
sperm/mL it is recommended that the patient undergo 
genetic testing (5). The two most common genetic tests are 
a karyotype and a Y chromosome microdeletion (YCMD) 
analysis (5,6). It is estimated that karyotypic abnormalities 
will be found in 3–5% of oligospermic men and up to 19% 
of men with non-obstructive azoospermia (NOA) (7,8). 
YCMD are found in 2–5% of severely oligospermic men 

and 5–10% of men with NOA (9-11). 
Copy number variants (CNV) are well known in the 

human genome as they allow for phenotypic diversity (12). 
CNV affect more nucleotides in the human genome than 
SNPs and can arise via several mechanisms including; non 
allelic homologous recombination, non-homologous end 
joining, and retroelement insertions (13,14). However, 
CNV can also lead to negative consequences and have 
been implicated in intellectual disability (15), epilepsy (16), 
cancer (17), and other disease processes. For reasons we will 
discuss further, the Y chromosome is particularly susceptible 
to CNV which can lead to fertility issues. The most well-
known CNV on the Y chromosome are the total AZF 
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deletions, but also includes AZFc partial deletions, such as 
gr/gr gene alterations, and the TSPY gene array. The AZF 
deletions will be discussed in detail in another article in this 
journal and will only be touched on briefly here. And while 
most studies of CNVs have revolved around fertility, there 
is some growing evidence that they could lead to other 
health issues, such as cancer (18).

The Y chromosome

The Y chromosome is acrocentric, meaning it contains 
a shorter Yp and longer Yq arm, with a total of around 
60 million-base (Mb) pairs, making it one of the smallest 
chromosomes in the human genome. It is one of the most 
unique and important chromosomes, as amongst other 
genes, as it contains the SRY gene region that provides 
the genetic data for embryonic sex determination. Yet, it 
is also the only chromosome that can be missing entirely 
without lethal consequences (19). Due to an evolutionary 
effect known as gene decay, where unused genes are 
slowly removed from the genome, the Y chromosome 
now contains 54 protein coding genes compared to the 
X chromosome that contains approximately 700 protein 
coding genes. The Y chromosome is generally divided into 
two domains, the pseudoautosomal regions (PAR1 and 
PAR2) and an area known as male-specific Y region (MSY) 
(9,20). The PAR regions contain genes that work similar to 
autosomal genes and defects here can cause issues such as 
short stature, schizophrenia, and bipolar disorder (21-23). 
PAR1 also serves as a region to allow for pairing with the X 
chromosome that is crucial for meiosis (24).

The MSY is a far larger region of the Y chromosome 
and is unique in that it does not recombine with its X 
chromosome pair. There are three classes of sequences 
within the MSY region; X-transposed, X-degenerate, and  
amplionic (25). The majority of the genes involved in 
male reproduction and spermatogenesis are located in 
the amplionic regions (19,26). The amplionic regions are 
comprised of 9 separate protein-coding multi-copy gene 
families that total 10.2 Mb pairs. These amplionic sequences 
demonstrate sequence pairs that are nearly identical with 
other regions within the MSY. Eight of these nine regions 
exist as palindromic sequences, consisting of highly similar 
inverted sequence repeats with short spacer sequence 
dividers. The ninth sequence, called TSPY, exists as a tandem 
array of repeats located on the Yp arm. It is suggested these 
palindromic sequences exist to allow for intra-chromosomal 
gene transfer to preserve genes important for male fertility 

and prevent the accumulation of mutations that would 
eventually lead to the reduction of fertility. However, this 
also allows for deletions and or duplications of repeated 
sequences through non-allelic homologous recombination 
which can negatively impact male fertility (9,25,27-29). It is 
this mechanism that can lead to gene copy number variations 
with resultant difficulties conceiving. Interestingly, even 
among healthy men there are variations in the Y amplionic 
gene copy number (30-32). Some of this variation is related 
to Y haplogroups, ethnicity, and geographic region, further 
complicating study of this phenomenon (32). This review will 
focus on CNV on the Y chromosome and how they play a 
role in male infertility and overall health.

Initial study of copy number variation on the Y 
chromosome

Infertility-related copy number variations were first 
recognized as a clinical entity in 1976 by Tiepolo and 
Zuffardi (33). In their study of 1170 sub-fertile men, 
karyotype analyses revealed a subset of men with a deletion 
within the Yq11 region. These men had normal body 
habitus in contrast to the previously recognized Klinefelter’s 
syndrome, the predominant cause of genetic male infertility 
(34-36). The deleted regions were termed ‘azoospermia 
factor’ (AZF). The AZF region was further confirmed by 
both cytogenetic and molecular studies (37-39). Building on 
this work, Vogt et al. sought to further define this region and 
determine if it were a single gene locus or multiple loci by 
screening 376 men with normal karyotype and azoospermia 
or severe oligospermia. The Y chromosome was specifically 
analyzed for 76 different DNA loci. Through this technique 
they were able to define 3 distinct regions within Yq, termed 
AZFa, AZFb, and AZFc (40). This was the first clinical work 
to demonstrate how copy number variation, in this case 
reduced copy number, could lead to fertility issues in men. 

Clinically, it has been suggested that copy number 
variations can be defined in 3 ways: (I) AZF deletions 
(and partial AZFa and AZFb), (II) partial AZFc deletions/
duplications, (III) the TSPY region (9). AZFc is the largest 
region measuring at 4.2 Mb followed by AZFb at 3.2 Mb 
and finally AZFa at 792 Kb. The palindromic sequence 
within AZFc is the largest, most uniform, and elaborate 
of identified inverted repeats among previously studied 
organisms and is about three times longer than the next 
largest palindrome in humans (located on chromosome 5). It 
measures 3 Mb in length (41). This has led to great interest 
and further study, however studying large palindromic 
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sequences makes the endeavor more complicated due to 
the difficulty in ordering the defined sequences since they 
appear similar (41). Some of this complex work is detailed 
in Kuroda-Kawaguchi et al. (41).

AZFa

The AZFa region is the shortest of the three named 
regions, measuring in at 792 Kb (42). It contains only four 
coding genes that are ubiquitously expressed within the 
body but that each have only a single copy within the AZFa 
region (20). This region is found deleted about 0.5–4% of 
the time when AZF deletions are found (43). Despite being 
the smallest of the AZF regions, complete deletion leads to 
the most severe phenotype, Sertoli-cell only. The 4 genes 
isolated to this region are USP9Y, DBY, UTY, and TBY4 
(26,44-46). Both USP9Y and DBY play important roles in 
spermatogenesis with it being believed that DBY is the more 
important of the two genes. At this time, UTY and TBY4 
have unclear roles (20). No men with an identified AZFa 
deletion have ever been found to have sperm. Since these 
are only single gene copies, any copy number variation in 
this region has extreme consequences. 

AZFb

The AZFb region is in the midportion of Yq11 and spans 
a total of 3.2 Mb, with 1.5 Mb overlapping with the AZFc 
region. It is found deleted in approximately 1–3% of cases 
with AZF deletions (43). It contains 3 single copy regions, 
a 19-satellite repeat array, and 14 multi-copy amplicons 
organized into 6 sequence families. AZFb contains 15 
coding protein genes and 17 non coding RNAs (20). The 
classical copy number variation within this section is a 
complete deletion that overlaps 1.5 Mb with AZFc and 
leads to a complete loss of 32 coding genes. It is generally 
accepted that AZFb deletions lead to azoospermia, though 
with elements of maturation arrest as opposed to Sertoli-
cell only found in AZFa. However, there have been rare 
reports of men with AZFb deletions that had some residual 
sperm production, likely due to an aberrant deletion 
patterns (47,48). Another article within this journal will go 
into more depth with regards to AZFb.

AZFc

AZFc is the largest of the coding regions and most complex. 
It measures at 4.2 Mb total and complete deletions are 

found in 80% of all AZF deletions (43). AZFc is arranged in 
3 large palindromes that are each comprised of six distinct 
amplicons. The amplicons range in size from 115 to 678 
kb each (41). A complete AZFc deletion, also known as 
a b2/b4 deletion based upon amplicon break points, is 
most commonly seen and tends to exhibit the least severe 
phenotype of the AZF deletions being the only one where 
patients could have either oligospermia or azoospermia 
but with a 50% chance of retrieving sperm on testicular 
extraction (49). The full AZFc deletion will be discussed 
in another article in this edition. This article will focus on 
specific partial deletions and copy number variations within 
AZFc. 

When AZFc was first being studied it was proposed that 
in addition to the entire region being deleted, there were 
sub-sections of the region that would be susceptible to 
deletion given their structure (50). These specific deletions 
were identified and characterized as gr/gr deletion (1.6 Mb) 
and the b1/b3 deletion (1.6 Mb) (51). The gr/gr deletion 
was of concern because it removes 9 of the 32 gene coding 
units within AZFc and occurs within a region that is needed 
for normal spermatogenesis. However, for 8 of these 9 
gene families, the deletions only reduce the copy number 
of these genes since gene copies are located elsewhere 
on the Y chromosome. The initial study defining these 
alternate deletion patterns included 689 men, of whom 473 
had spermatogenic failure, and found 22 men with a gr/gr 
deletion and one man who had a b1/b3 deletion. The names 
were determined by genetic break points. After controlling 
for Y haplogroups, the group found that men with a gr/gr 
deletion had a significantly increased risk of spermatogenic 
failure (51). This group went on to identify another deletion 
within the AZFc region that affected gene copy numbers 
and referred to as the b2/b3 deletion based upon amplionic 
break points (52). 

The major genes that  have their  copy number 
significantly affected by these deletions are the DAZ and 
CDY1 genes. These genes, and their reduction in copy 
number, have been known to have a significant impact on 
spermatogenesis since the 1990s (52-54). While these early 
studies focused on DAZ1 and DAZ2 further studies went on 
to examine deletions of other members of the DAZ family 
and still found effects on spermatogenesis related to DAZ 
copy number (55,56). Copy number of these genes playing 
an important role was further suggested by German group 
that compared 170 men with normal spermatogenesis to 
348 men with impaired spermatogenesis. The gr/gr deletion 
was found in 14 men with impaired spermatogenesis and 
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in 3 men with normal spermatogenesis, and two of them 
had fathered children. The b1/b3 deletion was found in 
1 normal and 1 impaired man and the b2/b3 deletion 
was found in 5 normal men and only 2 of the abnormal 
spermatogenesis group. And while the gr/gr deletion 
was more common in the impaired group, it was not a 
significant difference, and therefore this group suggested 
that while these particular copy number variations can play 
a role in spermatogenesis, these deletions and the changes 
in copy number may not tell the entire store (57). 

Another group out of India examined 822 infertile 
men and 225 men with proven fertility. They found gr/gr  
deletions in 48 of the infertile men and 2 of the fertile men, 
they found b1/b3 deletions in 1 infertile man and 0 fertile 
men, and in the b2/b3 group they found 2 and 1 deletions 
respectively within the infertile and fertile groups. And 
while the gr/gr deletion group did have a significantly 
increased risk of infertility, their sperm concentrations, 
while trending lower, were not significantly different 
(54.20±57.45 vs. 72.49±60.06 million/mL) (58). 

Other studies continued to examine these different 
deletions and their effects on spermatogenesis, with studies 
often deciding to limit to certain populations to better 
control for Y haplogroups. A meta-analysis of the gr/gr 
deletion incorporated 18 case-control studies with a total 
of 6,388 cases and 6,011 controls and found that 6.9% of 
cases had the gr/gr deletion while 4.7% of controls also had 
the deletion. While there was a significantly increased risk 
of infertility in the cases group, these alterations in copy 
number clearly cannot tell the entire story. There was also 
a correlation of gr/gr deletion based upon Y haplogroups 
and geographic region. This studied stated that at this time 
they would not recommend routine screening for the gr/gr  
mutation as it may lead to more questions than answers (59).  
While some of the early studies looking at b2/b3 deletions 
did not demonstrate significant effects, a meta-analysis that 
incorporated 24 studies and had 8,892 oligo/azoospermic 
men compared to 5,842 normozoospermic men was 
performed to better examine the data. The b2/b3 deletion 
was found in 241 oligo/azoospermic men (2.7%) and 118 
normozoospermic men (2%). In the meta-analysis, the 
fixed model demonstrated an OR of 1.3 that having the  
b2/b3 deletion would have a significant negative impact on 
spermatogenesis. Much like the analysis looking at gr/gr,  
these findings tied heavily to different haplogroups and 
geographic regions.

TSPY1 gene array

The testis-specific protein Y encoded 1 (TSPY1) gene array 
is located on the Yp arm. The TSPY1 gene copies exist as 
20.4 kb sequences that occur in tandem repeats. These 
repeated sequences range in number from 11–76 and are 
highly variable across haplogroups (60,61). It is suspected 
that copy numbers outside this range are incompatible with 
life and thus are not found in current populations (62). 
Given this belief and the large copy number variability of 
the TSPY1 gene it has been examined for relation to sperm 
counts and fertility. A 2006 study from the Czech Republic 
noted copy numbers varying from 30–60 and that increased 
number of copies of TSPY1 led to a significant increase in 
infertility (63). In direct contradiction to this finding was a 
study in 2009 of Italian men, where copy numbers ranged 
from 21–35, and found that having fewer copies of TSPY1 
led to a significant decrease in sperm counts and fertility (64). 
However, there was a third study examining TSPY1 copy 
number in 2010 performed on Dutch men that found no 
effect on TSPY1 copy number and fertility when comparing 
fertile and infertile men. In this study, the control group 
had a median TSPY1 copy number of 34 (26–76 copies) 
while the infertile group had a median TSPY1 copy number 
of 35 (20–73 copies) (65). Three studies, three different 
results. The group that produced the Italian study has 
theorized subsequently that because of the variation across 
the populations, controlling for Y haplogroups during these 
studies is important. This group expanded on their initial 
study, increasing their study size to 212 men having abnormal 
semen parameters compared to 168 men with normal semen 
parameters and continued to find a significantly lower TSPY1 
copy number in the infertile group (28.5±7.9 vs. 32.6±10.1 
copies) (66). A very thorough study out of China in 2013 
examined 2,272 Han Chinese men and found seven distinct 
Y haplogroups. These haplogroups had significantly different 
mean number of copies of the TSPY1 gene. Overall the study 
found that men with <21 copies of TSPY1 and men with >55 
copies of TSPY1 had a significantly lower sperm production 
and increased chanced of spermatogenic failure compared to 
men with 21–35 copies of the gene (67). The TSPY1 gene 
thus far appears to be the clearest example of CNV having 
significant, and variable, impact on spermatogenesis.

Other genes and sequences

There have been several other genes or sequences studied in 
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relation to copy number variation on the Y chromosome and 
fertility. The DYZ1 array comprises between 20-40% of the 
Y chromosome and was found to contain a pentameric repeat 
with about 3,000–4,300 copies of the gene array on the Y 
chromosome (68-71). Initially the DYZ1 array was thought 
to be of little importance because it does not participate in 
recombination but later studies revealed it could help with 
chromatin stabilization (72,73). These DYZ1 arrays are 
interspersed through the previously mentioned AZFa, b, c 
regions. This led to a group in India examining the DYZ1 
array for copy number variation and comparing 67 infertile 
men to 31 men with a normal semen analysis. They found a 
reduced DYZ1 copy number had significantly increased risk 
of infertility (74). Interestingly, even in monozygotic twins 
there has been found to be copy number variation of DYZ1 
on the Y chromosome, opening further questions into the 
effects of copy number variation as a whole (75).

Another gene with noted copy number variation linked 
to fertility and spermatogenesis has been RBMY1. It is 
known in AZFb deletions, all active copies of RBMY1 are 
deleted, which leads to azoospermia (76). It has also been 
observed that there is significant copy number variation 
of the RBMY1 gene in the general population and the full 
implications of this are not fully understood (77). A study 
of Han Chinese men to compared RBMY1 copy number 
between 506 men with normozoospermia and 564 men with 
oligo or athenozoospermia without previously identified 
chromosomal deletion to examine for copy number and 
relation to sperm motility. The study found that men with 
fewer than 6 copies of RBMY1 were at an increased risk of 
athenozoospermia. Six copies of the gene were found to be 
the average number within this population. In contrast, 376 
Estonian men with oligo or azoospermia without known 
prior chromosomal deletions were analyzed for RBMY1 
copy number and its effects on sperm motility. Unlike the 
Chinese study, there was no evidence of RBMY1 gene copy 
number playing a role in determining sperm motility (78).

Y chromosome copy number variation—beyond 
infertility

While fertility consequences remain the largest concern 
for CNV of the Y chromosome, recent studies have 
demonstrated there could be health issues beyond male 
factor infertility. Once genes were identified on the Y 
chromosome, groups began to look for this gene expression 
in other tissues of the body. Interestingly the genes most 
commonly found in other tissues of the body were usually 

within the AZFa and AZFb regions with relatively few in 
the AZFc region, despite it being the largest (79). Colaco 
and Modi then examined the putative functions of these 
genes and as expected most of the functions were related to 
spermatogenesis, but they also found 14% of genes involved 
in regulation of gene expression, chromatin organization, 
and regulation of protein synthesis. In addition, 24% of 
the genes code for products involved in protein-protein 
interactions, 18% in nucleic acid binding, and 12% in 
RNA binding (80). With the wide expression of these genes 
throughout the body and the alternative functions besides 
spermatogenesis, it can be understood how these genes may 
play a role in other health issues.

Given the importance of the Y chromosome to 
testicular function; it has long been suspected that genes 
on the Y chromosome can play a role in testicular cancer 
development. This has been seen in the development of 
gonadoblastoma in Turner’s syndrome patients (81) as well 
in other germ cell tumors in patients with disorders of 
sexual development (82). The previously discussed gr/gr  
deletion has been implicated in the development of 
testicular germ cell tumors (83,84). Beyond the testicle, loss 
of the Y chromosome in peripheral blood has been found 
to be a risk factor for the development of colorectal and 
prostate cancer (85). Additionally, certain deletions of genes 
from the Y chromosome can lead to more aggressive types 
of prostate cancer (86-88). Interestingly, the RBMY1 gene 
previously discussed is only expressed within the testicle, 
but changes in copy number have been implicated as a 
risk factor for hepatocellular carcinoma in men (89) and 
could also contribute to a poorer prognosis in men with 
hepatocellular carcinoma (90). 

In addition to cancer risks associated with changes in Y 
chromosome gene copy numbers, these genes can play a 
role in neuropsychiatric disorders. Three of the AZFa genes 
and four of the AZFb genes are expressed in the cerebral 
cortex (80). There is evidence that changes to these genes 
copy numbers can be risk factors for ischemic stroke (91) 
and the development of Parkinson’s disease (92). Colaco 
and Modi were able to utilize the Decipher database, which 
collects clinical data on patients with CNVs, to identify 
84 men with copy number variations within the AZF 
regions. There was clinical information in the database on 
71 of these men, with 21 of these men with AZF CNVs 
also having neuropsychiatric concerns. Examples included 
delayed development, intellectual disorders, and anxiety or 
mood disorders (80). There is even evidence in mice that Y 
chromosome CNV can be linked to central nervous system 
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autoimmune diseases in female offspring (93).
Other studies suggest, at least in a European population, 

certain Y haplogroups can play a role in the risk of 
developing cardiovascular disease (94). Another study noted 
that changes in UTY expression, previously as mentioned as 
being within the AZFa region, could affect cardiovascular risk 
by playing a late role in development of atherosclerosis (95).  
Some of these Y chromosome effects are beyond the scope 
of this review as they do not strictly deal with CNV, but 
Maan et al. have an excellent review of the topic (96).

Conclusions

The Y chromosome is unique among human chromosomes 
in both its small size and uniquely repetitive structure. It is 
this unusual structure that not only provides protection from 
genomic degradation over time but can also lead to changes 
in gene copy number expression that can have dramatic 
effects on both fertility and in some cases overall health. 
While the effects of AZF whole deletions appear to be fairly 
well understood, specific gene copy number variations and 
their effects are still being isolated and understood within 
the context of fertility and general health. The study of 
this phenomenon is further complicated because it appears 
that Y haplogroups can play a significant role in how much 
copy number variation affects overall fertility. This can 
make comparing data and studies across populations more 
complicated. As it stands now, given the limited knowledge, 
testing specifically for these CNVs likely will not have an 
impact on clinical care for a man with male factor infertility.
For CNV testing to play a critical role in male infertility 
evaluation, further research needs to be completed to 
look more in depth at specific areas for CNV on the Y 
chromosome and better defining the number of CNV that 
become are clinically important. Additionally, utilization 
in male factor evaluation would require clinically accurate 
and accessible testing as opposed to research testing. As 
research and understanding of the topic continues to grow, 
CNVs will likely become more frequently tested to allow 
for improved clinical care in the future. 
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