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Kidney stones are comprised of mineral and organic 
components. Approximately 80% of the kidney stones 
contain calcium oxalate (CaOx) as the major mineral phase 
mixed mostly with calcium phosphate (CaP) and sometime 
uric acid (1). Stone formation involves crystal nucleation, 
growth, aggregation and their retention in the kidneys (2).  
These processes are modulated by a variety of urinary 

macromolecules which become incorporated in the growing 
crystals and stones and eventually constitute stones’ 
organic component or matrix. A better understanding 
of the pathogenesis of kidney stone formation has been 
developed through examination of clinical data and the 
use of animal models and tissue cultures. Based on clinical 
and experimental data, it is becoming obvious that stone 
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formation is not a simple physicochemical disorder. Renal 
epithelial cells as well as others respond to changing urinary 
environment; dysregulated mineral metabolism and in the 
case of CaOx nephrolithiasis, abnormal calcium, citrate, 
oxalate, phosphate, and CaOx/CaP crystals, by increased 
production of a variety of crystallization modulating 
macromolecules, epithelial to mesenchymal transition 
(EMT), epithelial to osteoblast transformation (EOT), 
and remodeling of extracellular matrix (ECM). It appears 
that reactive oxygen species (ROS) are intimately involved 
as signaling molecules as well as agents of injury and 
inflammation during stone formation (3-6). 

Reactive oxygen species (ROS)

ROS comprising free radicals, atoms or molecules with 
unpaired electrons, and their metabolites, are highly reactive 
and play a critical role as signaling molecules. But they can also 
produce chemical modifications of, and damage to proteins, 
lipids, carbohydrates and nucleotides (7,8). Major cellular 
ROS include superoxide anion (O2

–•), nitric oxide radical 
(NO•), hydroxyl radical (OH•), and hydrogen peroxide 
(H2O2), which are generated by several pathways (Figure 1). 
O2

–• anions are produced by NADPH oxidases, xanthine 
oxidase, lipooxigenase, cyclooxygenase, hemeoxygenase 
and as a byproduct of mitochondrial respiratory chain. 
Lipid radicals can also produce O2

–•. NO• radicals are 

produced by the endothelial nitric oxide synthase (eNOS) 
mediated oxidation of L-arginine. In addition, eNOS can 
also produce O2

–• rather than NO. The reaction between 
superoxide and nitric oxide can produce the highly reactive 
peroxynitrite ONOO–. 

Cells are equipped with a number of scavenging 
systems to control ROS availability (Figure 1). These 
include superoxide dismutase (SOD) to eliminate O2

–•, 
and glutathione (GSH) peroxidase (GPx) and catalase to 
detoxify H2O2 (Figure 1). Superoxide has a short half-life 
and spontaneously converts to H2O2 which is long-lasting 
and far more reactive than superoxide ions. The reaction is 
noticeably enhanced by SOD. Moreover, in a more complex 
transition metal catalyzed reaction called metal catalyzed 
Haber-Weiss reaction, H2O2 yields an even more reactive 
hydroxyl radical, which is however, short lived and works 
at short range. Initially, superoxide anions donate single 
electrons to ferric ions resulting in molecular oxygen and 
ferrous ions. The Fenton Reaction between ferrous ions and 
H2O2, leads to the formation of OH•. H2O2 is subsequently 
metabolized to water via catalase or by glutathione 
peroxidase in the presence of reduced glutathione.

Under normal conditions the superoxide anions (O2
–•),  

NO radicals (NO•) and their metabolites are generated 
by tightly controlled enzymes and serve as mediators in 
a variety of regulatory processes and signaling pathways 
including proliferation, activation or inactivation of 

Figure 1 Sources and reactions involved in the production of superoxide (O2
–•), nitric oxide (NO•), hydrogen peroxide (H2O2), peroxynitrie 

(ONOO•–), and hydroxyl radicals (OH•). GSH, glutathione; GPx, glutathione peroxidase; GSGG, oxidised glutathione; NOS, nitric oxide 
synthase; SOD, superoxide dismutase.
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regulatory biomolecules, and regulation of transcriptional 
activities. ROS regulate many calcium signals as well as 
such genes as c-fos, c-myc, and c-jun and transcription factor 
activation protein-1 (AP-1) and nuclear factor κB (NF-κB). 

ROS and reactive nitrogen species (RNS) normally occur 
at steady state levels, generated when needed and then 
cleared by activities of various antioxidants and scavengers. 
But uncontrolled generation of the reactive oxygen or 
nitrogen species and/or a reduction in the endogenous 
antioxidant capacity creates oxidative stress (OS). Most 
cells respond to OS by boosting the levels of intracellular 
antioxidants such as glutathione. The oxidants can react 

with all the basic constituents of cells: lipids, carbohydrates, 
proteins and nucleic acids severely affecting their structure 
and function. Pathological changes may result from the 
damaging effects of ROS and from ROS-mediated changes 
in gene expression and signal transduction. 

Sources of ROS in CaOx nephrolithiasis

ROS are produced through the involvement of both 
mitochondria (4,9-12) and NADPH oxidase (Figure 2) 
(4,13,14). NADPH oxidase is a major source of ROS in the 
kidneys (15,16), particularly in the presence of Angiotensin 

Figure 2 Proposed scheme for NADPH oxidase and mitochonrial involvement in the generation of reactive oxygen species (ROS) and their 
role in CaOx nephrolithiasis. Hyperoxaluria/CaOx/CaP crystal deposition causes renin upregulation and generation of angiotensin II which 
activates NADPH oxidase and production of ROS. Mitochondrial permeability transition pores are opened. The activation of phospholipase 
A2 (cPLA2) and neutral sphingomyelinase (N-Smase) affect mitochondria through lipid products archidonic acid, lysophosphatidylcholine 
(Lyso-PC) and ceramide. The production of cytochrome C (Cyt-C) goes up. There is a reduction in mitochondrial membrane potential 
(ΔΨ) and reduced glutathione (GSH). These actions lead to activation of caspases and apoptosis. ROS activate transcription factors such as 
nuclear factor κB (NFκB), activated protein-1 (AP-1) and growth factors including TGFβ through P38 mitogen-activated protein kinase 
(-MAPK)/JNK. Runt-related transcription factor-2 (RUNX-2) and Osterix which are associated with osteoblast differentiation are also 
upregulated. Secondary mediators such as isoprostanes and prostaglandins are generated. Macromolecules involved in chemoattraction of 
monocyte-macrophages, crystallization modulation, bone morphogenesis, and fibrosis are produced. O2

•–, superoxide; OH•, hydroxyl radical; 
H2O2, hydrogen peroxide; OPN, osteopontin; BK, bikunin; MCP-1, monocyte chemoattractant protein-1; MGP, matrix gla protein; BMP, 
bone morphogenetic protein; BSP, bone sialoprotein [Modified from Khan SR (4)]. 
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II (17). NADPH oxidase consists of six subunits, the 
two transmembrane units, p22phox and gp91phox; and four 
cytosolic units, p47phox, p67phox, p40phox and the small 
GTPase rac1 or rac2 (18). The two transmembrane units, 
gp91phox and p22phox and a flavin make cytochrome b558. The 
cytosolic units translocate to the membrane and assemble 
with the cytochrome to activate the enzyme. 

ROS in response to oxalate and CaOx crystals are in 
part produced with the involvement of NADPH oxidase 
through the activation of the rennin angiotensin system 
(RAS). Reduction of angiotensin production, by inhibiting 
the angiotensin converting enzyme as well as blocking the 
angiotensin receptor, increased renin expression, reduced 
osteopontin (OPN) expression, crystal deposition and 
ameliorated the associated inflammatory response (Figure 2) 
(19-21). NADPH oxidase inhibition by apocynin treatment 
reduced the production of ROS, urinary excretion of kidney 
injury molecule (KIM) and renal deposition of CaOx 
crystals in hyperoxaluric rats (22). Atrovastatin, which 
has been shown to reduce the expression of gp91phox and 
p22phox subunits of NADPH oxidase (23), also inhibited 
crystal deposition in rats with experimentally induced 
hyperoxaluria (24).

Mitochondria are generally the most common source of 
superoxide and H2O2 in most cells and tissues. Hyperoxaluria 
and CaOx crystal deposition in rat kidneys causes 
mitochondrial damage. Treatment with taurine which has 
been shown to prevent oxidative injury of the mitochondria, 
reversed mitochondrial changes in the hyperoxaluric rat 
kidneys and decreased crystal deposition (25). Selective 
probes, substrates and inhibitors show mitochondria to 
be significant site of CaOx crystal induced superoxide 
production and glutathione depletion in both LLC-PK1 
and MDCK cells (9). Exposure of LLC-PK1 cells to oxalate 
significantly increased cellular ceramides (26), however, 
pretreatment with glutathione precursor N-acetylcysteine 
(NAC) blocked this increase. Isolated mitochondria 
responded to oxalate exposure by the accumulation of ROS, 
lipid peroxides and oxidized thiol proteins (11). Citrate 
is also involved in maintaining endogenous antioxidant 
defenses. Administration of exogenous citrate to LLC-PK1 
and MDCK cells bolstered these defenses and diminished 
the cellular injury inflicted by exposure to increased Ox 
and CaOx crystals (27). The presence of citrate in the 
culture medium was associated with a significant increase 
in GSH peroxidase and a drop in the production of H2O2 
and 8-isoprostane (8-IP), which is an end product of lipid 
breakdown. There was a significant improvement in cell 

viability as demonstrated by decreased LDH release and 
increased trypan blue exclusion. 

Mitochondrial damage is suggested to be induced by 
the opening of mitochondrial permeability transition pore 
(mPTP). mPTP opening depends upon the activation of 
cyclophilin D in the mitochondrial matrix by ROS produced 
by NADPH oxidase and is inhibited by cyclosporine A  
(CSA) (28).  CSA prevented the depolarization of 
mitochondrial membrane, decrease in SOD expression, 
increase in 4-hydroxy-2-nonenal (4HNE) and release of 
cytochrome-c into the cytosol in NR52E renal epithelial 
cells exposed to CaOx monohydrate crystals in vitro. 
CSA treatment of hyperoxaluric rats resulted in reduced 
mitochondrial damage, OS and CaOx crystal deposition in 
the kidneys.

Association of inflammation and injury with 
human stone formation

Most idiopathic stones are formed attached to Randall’s 
plaques (RPs), the sub-epithelial deposits of CaP on 
renal papillary surfaces (29). RPs are postulated to start 
as deposits of poorly crystalline biological apatite in the 
basement membrane of the loops of Henle (30,31) or 
collecting ducts (32) or vasa recta (33,34). The deposits, 
consisting of aggregated CaP spherules, grow through the 
interstitium towards the renal papillary epithelium, where 
they eventually ulcerate to the surface (35). Interestingly, all 
RPs are not connected to stones and kidneys of non-stone 
formers also contain interstitial plaques (36). 

Stones such as cystine, brushite, CaOx in primary 
hyperoxaluria and after bariatric surgery, some idiopathic 
stones and CaP in primary hyperparathyroidism are found 
attached to Randall’s plugs (the tubular crystal deposits 
in the ducts of Bellini (31,37,38), which were most likely 
formed as a result of higher supersaturation with respect to 
the precipitating salt (39). Crystal deposition is associated 
with renal cell injury, cell loss, inflammation and fibrosis 
(4,40-45). The inflammation is generally localized to areas 
around crystal deposits in the renal papillae. In brushite 
stone formers, however, inflammation and fibrosis reach 
the cortex showing wide spread renal tubular atrophy and 
glomerular pathology (42). 

It has been suggested that RPs are formed without 
causing renal injury and inflammation (31,46). But a close 
examination of published illustrations (30,32,36,47) clearly 
demonstrate the presence of necrotic tubules with thickened 
and layered basal lamina, along with perfectly normal 



260 Khan. Kidney stones and oxidative stress

© Translational Andrology and Urology. All rights reserved. Transl Androl Urol 2014;3(3):256-276www.amepc.org/tau

ones in association with the CaP spherules embedded in a 
matrix of collagen and other fibers. Similarly we have found 
injured tubules associated with the interstitial deposits of 
apatitic mineral (35,38). The molecules generally involved 
in inflammatory pathways, such as OPN (48,49), heavy 
chain of inter-α- inhibitor (50,51), collagen (30,36,47), and 
zinc (52) have been seen in the interstitial plaques strongly 
suggesting that inflammation may have been an early and 
local participant (4), which was resolved by the time stone 
was discovered. Biopsies are taken at the time of stone 
removal, many months after stone formation. Moreover, 
only a very small amount of tissue from limited number 
of patients has so far been investigated. “It is important to 
emphasize that urolithiasis is merely a final manifestation of 
diverse and systemic etiological and pathogenic events” (53). 
Inflammation is a complex biological response to various 
irritants. Osteopotin and inter-α-inhibitor are protective 
mediators, which are most likely produced to inhibit 
crystallization and protect the kidneys. In normal human 
kidneys, OPN is localized primarily to the distal nephron 
and is strongly expressed in the thick ascending limbs of 
the loops of Henle and papillary surface epithelium. OPN 
expression is increased during inflammation and interstitial 
fibrosis (54). 

Renal CaOx crystal deposits have been seen in a variety of 
disorders with increased production and excretion of oxalate. 
In biopsies from a patient with primary hyperoxaluria, 
crystals were seen within tubular epithelial cells as well as 
in the interstitium of the transplanted kidney (55) and were 
associated with vascular and interstitial inflammation, 
cell proliferation and multinucleated giant cells. Similar 
observations have been made in other cases of increased 
urinary excretion of Ox secondary to enteric hyperoxaluria, 
Crohn’s disease, and after intestinal bypass (56,57). 

Higher than normal levels of renal enzymes, gamma-
glutamyl transpeptidase (GGTP), angiotensin 1 converting 
enzyme (ACE), β-galactosidase (GAL), and N-acetyl-
β-glucoseaminidase (NAG) were found in the urine of 
idiopathic CaOx stone formers (58), indicative of renal 
proximal tubular injury. The urine had significantly 
increased NAG, β-GAL, α-glutathione S-transferase 
(α-GST), malondialdehyde (MDA) and thiobarbituric acid-
reactive substances (TBARS) (59), suggesting that stone-
associated injury was most likely caused by the production 
of ROS. Urinary 8-hydroxydeoxyguanosine (8-OHdG), a 
marker of oxidative damage of DNA, was increased in stone 
patients and was positively correlated with tubular damage 
as assessed by urinary excretion of NAG (60). Recurrent 

idiopathic calcium stone formers with and without stones, 
exhibited antioxidant deficiency. Investigators concluded 
that lithiasis started with oxidatively damaged cells (61). 
Anti-inflammatory proteins calgranulin, α-defensin, and 
myeloperoxidase (62), were increased in urine of stone 
patients and were also found in the inner core of the CaOx 
stones. 

Members of IαI family of proteins, which are important 
participants in wound healing, were significantly increased 
in the urine of male stone formers (63), and found in 
the stone matrix as well as the matrix of CaOx and CaP 
crystals induced in the urine (64,65). Hyaluronan, which 
plays an important role in renal injury and repair, was a 
major constituent of the organic matrix of stones (66). 
Prothrombin fragment-1, a member of thrombin family 
of proteins which are extensively involved in tissue repair, 
was also excreted in urine, present in stone matrix and 
preferentially bound to CaOx crystals (67). Kidneys of stone 
formers expressed mRNA for MCP-1 as well as IL-6 (68). 

Nephrolithiasis and chronic kidney diseases 
(CKDs)

Kidney stone formation has been linked with a number of 
chronic diseases (69), such as obesity (OB) (70), diabetes 
mellitus (DM) (71), hypertension (HTN) (70), metabolic 
syndrome (MS) (72), and CKD (Figure 3) (73). Nephrolithiasis 
is a risk factor for the development of hypertension (74), while 
similarly hypertensive patients are at greater risk to develop 
nephrolithiasis (75). There is an association between stone 
disease and DM (71,76-81), as diabetics persistently produce 
acidic pH and have a greater risk to form uric acid stones (82). 
Kidney stone formers are also at greater risk for coronary 
artery disease (83), myocardial infarction (84) and CKD 
(83,85). Not surprisingly, stone formation is common in 
adults with metabolic syndrome and the frequency of stone 
formation is directly correlated with weight and BMI (86-88). 

Both clinical and experimental investigations indicate 
that OS and inflammation play a significant role in the 
development of cardiovascular diseases (89). OS is a 
common feature of HTN, DM, atherosclerosis, and 
myocardial infarct (Figure 4) (69). An increase in the 
production of ROS/RNS, and/or decrease in the extra and 
intracellular antioxidants has been demonstrated in both 
clinical and experimental HTNs (90) and leads to OS which 
may not only initiate HTN but also be developed by the 
hypertensive state (91). Experimental studies have shown 
the involvement of NADPH oxidase in the development of 
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hypertension (91-93). OB associated OS eventually leads 
to systemic inflammation and endothelial cell dysfunction 
(94,95). Proper endothelial performance requires NO 
which acts on pericytes, and is depleted during OS because 
of its inactivation by O2

–• (96,97). Oxidation of the NO 
also results in the formation of highly active ONOO– 
and enhancement of OS. NADPH oxidase is a major 
source of ROS in the kidneys and is activated by Ang II, 
mostly through the AT1 receptor. Both NO and O2

–• are 
produced by the renal epithelial cells, in addition, NO is 
also produced by endothelial cells. There is a tubulovascular 
cross talk, whereby NO produced by the epithelial cells of 
the medullary thick ascending limb affect the interstitial 
pericytes and endothelial cells.

NADPH oxidase is the major source of ROS in the 
kidneys and cardiovascular system (93). The kidneys of 
spontaneously hypertensive rats (SHR) showed increased 
production of O2

–• and upregulation of p47phox subunit (98).  
Administration of SOD mimetic tempol produced a 

reduction of blood pressure and renal vascular resistance (99).  
Significantly higher p22phox mRNA levels and NADPH 
oxidase driven O2

–• production were found in the aorta of 
SHR which were ameliorated by treatment with irbesartan, 
an angiotensin II receptor antagonist (100). The importance 
of p47phox is also shown by moderate hypertensive response 
to angiotensin II in mice lacking the p47phox (101,102). 
Inhibition by membrane permeable gp91ds-tat of p47phox 
assembly with gp91phox in Dahl salt sensitive (DS) rats fed a 
4% salt diet, normalized ROS production and endothelium 
dependent relaxation as well as expression of LOX-1 and 
MCP-1 (103). Administration of apocynin, an antioxidant 
and an inhibitor of the p47phox assembly with gp91phox, to DS 
rats on high salt diet produced significant reductions in the 
mRNA expression of gp91phox, p47phox, p22phox, and p67phox 
subunits in addition to significantly reducing insterstitial 
superoxide and mean arterial pressure (104). Apocynin 
also reduced NADPH oxidase activity, renal cortical O2

–•,  
monocyte/macrophage infiltration and glomerular and 

Hypertension

Nephrolithiasis Chronic kidney diseaseObesity/metabolic syndrome

Diabetes mellitus

Figure 3 Diagram showing associations between nephrolithiasis and other diseases with renal involvement.

Chronic kidney disease

Metabolic syndrome

Hypertension

Obesity

Nephrolithiasis

Reactive oxygen species

Diabetes mellitus

Figure 4 Role of ROS in nephrolithiasis and co-morbidities. ROS play a role in the progression of many disorders including nephrolithiasis. 
ROS produced during one disorder may instigate the other under conditions suitable for the specific disease. ROS, reactive oxygen species.
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interstitial damage (105). Experimental studies involving 
other animal models of hypertension have similarly shown 
the involvement of NADPH oxidase in the development of 
hypertension (91-93). 

NaDPH oxidase also plays an important role in diabetic 
nephropathy (106-108), particularly in the presence of high 
glucose. Levels of Nox 4 as well as p22phox mRNA were 
increased in kidneys of rats with STZ-induced diabetes 
along with an increase in immunostaining of 8-OHdG (109). 
Insulin treatment reduced them to control levels. STZ 
induced diabetes also increased excretion of H2O2, lipid 
peroxidation (LPO) products, and nitric oxide products 
(Nox) (110). Kidneys showed increased expression of 
gp91phox and p47phox and endothelial eNOS, increased 
mesangial matrix, fibronectin and type I collagen. The 
treatment with apocynin, which inhibits assembly of the 
cytosolic p47phox with the membranous gp91phox, inhibited 
the increases in membrane fraction of p47phox, and excretion 
of H2O2, LPO and Nox.

Dietary Approaches to Stop Hypertension (DASH) 
diet, which reduces the risks for stroke and cardiovascular 
diseases, also reduced the risk for stone formation by up 
to 45% (111). The relationship between DASH type diet 
and the incident symptomatic kidney stones was examined 
in a prospective analysis of data from Health Professionals 
Follow up Study (n=45,821), Nurses’ Health Study-1 
(n=94,108) and 2 (n=101,837) and found that men and 
women with higher DASH scores were significantly less 
likely to develop kidney stones than those with lower 
DASH scores. Low sodium DASH diet reduces OS 
and improves vascular functions, lowers blood pressure 
(112,113). Analysis of data from National Health and 
Nutrition Examination Survey (NHANESIII) showed that 
serum levels of antioxidants alpha-carotene, beta-carotene 
and beta-cryptoxanthin were significantly lower in stone 
patients. Lower levels of these antioxidants were associated 
with decreasing incidents of stone disease (114). 

The association between nephrolithiasis, CKD, DM, 
OB, HTN, and MS is most likely a result of common 
pathophysiological mechanisms (70). ROS and OS are 
common feature of CKD, nephrolithiasis, DM, OB, HTN, 
and MS. It is conceivable that ROS produced by one disease 
may lead to another under appropriate circumstances 
(Figure 4) (69,115,116). For example mild hypercalciuria, 
hyperoxaluria, hypocitraturia which under normal 
conditions may just be a curiosity or nuisance, can promote 
crystallization and stone formation when cells are injured 
by ROS produced through another disorder.

Epithelial exposure to oxalate or calcific 
crystals, inflammation and injury 

Tissue culture studies in which renal epithelial cells are 
exposed to Ox and/or CaOx or CaP crystals have provided 
new insights into mechanisms involved in stone formation. 
Cell response is time and concentration dependent and cell 
specific. Exposure to high concentrations of Ox as well as 
CaOx and CaP crystals for longer duration is injurious to 
renal epithelial cells (117-121). Crystals bind rapidly to the 
surface of epithelial cells and are internalized (122-127). 
Cells of proximal tubular origin are more susceptible to 
injury then cells originating from distal sections of the renal 
tubules. Lower Ox levels induce expression of immediate 
early genes, stimulate DNA synthesis and promote cellular 
proliferation, while higher Ox levels induce cell damage and 
death.

The response of renal epithelial cells to COM crystals 
is characterized by increased expression of specific genes 
that encode transcriptional activators, regulators of the 
ECM, and growth factors (118,128), and production of pro 
and anti-inflammatory molecule, such as OPN, monocyte 
chemoattractant-1 (MCP-1), prostaglandin E2 (PGE2), 
bikunin and components of inter-α-inhibitor (IαI), α-1 
microglobulin, CD-44, calgranulin, heparin sulfate, 
osteonectin, fibronectin and matrix-gla-protein (MGP) 
(14,21,129-134). Even though many of these molecules 
are integral to inflammation and fibrosis, they are also 
modulators of calcification (135,136). Gene expression of 
vimentin, a mesenchymal marker, is also increased (137). 

Tissue culture studies have also provided the evidence 
for the involvement of free radicals in toxicity, production 
of various crystallization modulators, and inflammatory and 
anti-inflammatory macromolecules (14,138-141). Renal 
cells exposed to CaOx crystals secrete superoxide (142) 
and cellular injury could be ameliorated by antioxidants 
and free radical scavenger (5,14,138-140,143). Free radical 
scavengers, catalase and SOD provided protection from 
oxalate induced injury to LLC-PK1 and MDCK cells (138). 
Catalase treatment also reduced MCP-1 mRNA as well 
as protein in the oxalate, CaOx, CaP and uric acid treated 
NRK52E renal epithelial cells (132,133). 

Inflammation and injury in animal models of 
CaOx nephrolithiasis

A number of rat and mice models (144,145), have been 
developed to investigate the pathogenesis of kidney 
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stones. None of the models completely replicate the 
process of idiopathic stone formation and develop stones 
on papillary surface attached to the RPs. Instead the crystals 
are intraluminal, reminiscent of Randall’s plugs. CaOx 
nephrolithiasis is produced by inducing hyperoxaluria 
through the administration of oxalate or its precursors such 
as glyoxylate, ethylene glycol (EG) and hydroxyl-L-proline 
(HLP). Both hyperoxaluria and CaOx crystal deposition trigger 
morphological and pathophysiological changes in the kidneys 
and alter urinary composition (22,146). Renal expression of 
OPN (21,147), Tamm-Horsfall Protein (THP) (148-150),  
bikunin (130,131), IαI (151), α-1microglobulin (152),  
prothrombin fragment-1 (PTF-1) (153), calgranulin, 
heparin sulfate (HS) (154), matrix gla protein (MGP) 
(155,156), are generally increased (Table 1) and often 
found at locations not normally seen. For example THP 

is specifically produced by epithelial cells lining the thick 
ascending limbs of the loops of Henle. However, in the 
rat model of CaOx nephrolithiasis THP is seen associated 
with crystals throughout the kidneys including the cortex 
(150,157). In addition the expression of NFκB, KIM, 
proliferating cell nuclear antigen (PCNA), and CD 44, 
e-cadherin, is also increased indicating both injury and 
proliferation (22,158). Urinary excretion of many of these 
molecules is increased as well (22,131,146,147,151,153,159). 
There is migration of monocyte and macrophages to 
the sites of crystal deposition. We examined kidneys at 
different times after induction of acute hyperoxaluria 
in male Sprague-Dawley rats, and found that CaOx 
crystals appeared first in the tubular lumen, then moved 
to inter- and intracellular locations, eventually relocating 
into the interstitium, where they became surrounded by 

Table 1 Urinary macromolecules and their role in crystallization and inflammation

Name Role in nephrolithiasis Role in inflammation and repair

Tamm-Horsfall protein (THP) Modulator of CaOx crystal nucleation, growth and 

aggregation as well as adherence to epithelium

Renoprotective, elicits immune response

Osteopontin (OPN) Modulator of CaOx crystallization, aggregation and 

crystal attachment

Calcium binding, renoprotective, anti-

inflammatory, chemoattractant for monocytes 

Prothrombin fragment-1 

(PTF-1)

Inhibitor of crystal growth and aggregation Calcium binding, coagulation

Bikunin and inter-α-inhibitor 

family (IαI)

Inhibitor of CaOx crystallization and attachment Metastasis, tissue repair and remodeling

α-1-microglobulin (α1m) Modulator of crystallization Immunosuppressive, protective against 

oxidative stress

Hyaluronic acid (HA) A major constituent of stone matrix, modulator of 

crystallization and adherence to renal epithelium

Major constituent of extracellular matrix

CD-44 Promoter of crystal attachment Tissue repair and remodeling

Calgranulin (Calprotectin) Inhibitor of crystal growth and aggregation Calcium binding, tissue remodeling and 

inflammation

Heparan sulfate (HS) Inhibitor of crystal aggregation and attachment Tissue remodeling

Osteonectin Calcium binding, tissue remodeling

Fibronectin Inhibitor of crystal aggregation , attachment and 

endocytosis

Morphogenesis, wound healing and 

metastasis

Matrix gla protein (MGP) Inhibitor of crystal deposition Inhibitor of biomineralization

Fetuin Increased urinary excretion by stone patients Anti-inflammatory

Albumin Modulator of crystal nucleation

Interleukin-6 Increased urinary excretion by stone patients Mediator of inflammation

Monocyte chemoattractant 

protein-1 (MCP-1)

No known role in crystallization Attracts monocytes, memory T cells, dendritic 

cells to site of inflammation

CaOx, calcium oxalate.
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macrophages. After a few weeks, the interstitial crystals 
disappeared, indicating the existence of a mechanism to 
remove the CaOx crystals (160). Multinucleated giant cells 
were also identified in the interstitium (161). 

Lipid peroxides increased in both the renal tissue and urine 
in rats with hyperoxaluria and CaOx nephrolithiasis (162). 
Additionally, treatment with antioxidant vitamin E improved 
the tissue levels of antioxidant enzymes, reduced injury and 
totally eliminated CaOx crystal deposition in the kidneys (163).  
Deposition of CaOx crystals in the kidneys was associated 
with reduction of total renal cellular glutathione and an 
increase in lipid peroxides (19). Rats who received ACE 
inhibitor losartan, known to reduce OS, showed a significant 
increase in glutathione concentration and a decrease in 
the thiobarbituric acid reactive substances in the kidneys. 
The activities of catalase and MnSOD increased in kidneys 
while α- and µ-glutathione-S-transferase (GST) levels 
increased in the urine of hyperoxaluric rats (164). Microarray 
analysis of the kidneys of hyperoxaluric rats also revealed 
the development of OS during hyperoxaluria and CaOx 
crystals deposition. Expression of genes for SOD, GPx, 

GST, aldehyde dehydrogenase, mitochondrial uncoupling 
protein and ceruloplasmin was increased in hyperoxaluric 
rats (165). Administration of apocyanin, an antioxidant and 
inhibitor of NADPH oxidase, to rats with hydroxypropline 
induced hyperoxaluria nearly completely reversed the effects 
of hyperoxaluria (146), in addition, the deposition of CaOx 
crystals in the kidneys was also significantly reduced (Figure 5),  
and the urinary excretion of OPN, KIM, MCP-1 was 
significantly reduced without any effect on hyperoxaluria 
(Figure 6). 

CaOx crystal deposition caused inflammation and 
attracted many inflammatory cells including leukocytes, 
monocytes, and macrophages (146,161,166,167), and 
multinucleated giant cells were identified around the 
crystals. The mechanism by which inflammatory cells 
enter the renal interstitium is not known, but chemotactic 
factors and adhesion molecules are involved. Leukocytes 
(neutrophils, monocytes, and lymphocytes) infiltrate the 
kidneys during a variety of inflammatory diseases. They 
mediate renal injury and subsequent sclerosis induced by 
such pathologies. Chemotactic factors are produced by 
renal cells and are found in the kidney and urine during 
inflammation. Results show that approximately 70-80% of 
monocyte chemotactic activity produced by cultured human 
mesangial cells (168), renal cortical epithelial cells (169),  
proximal tubular epithelial cells (170), and bovine 
glomerular endothelial cells (171), is accounted for by 
MCP-1. As discussed earlier, exposure to oxalate and both 
the CaP and CaOx crystals is associated with the production 
of MCP-1 by rat kidney cells culture (14,132,133). 

Epithelial to osteoblast transformation (EOT)

Vascular calcification, which plays a major role in the 
development of CKD, was considered to occur by a passive, 
unregulated physicochemical mechanism as an irreversible 
degenerative process. Now however, it is considered to be 
an actively regulated process in which vascular smooth cells 
(VSMC) acquire osteogenic phenotype (172-174). Exposure 
of VSMC to elevated levels of calcium and phosphate 
triggers osteogenic transformation of VSMC (175-178), 
which involves an increased expression of osteoblast 
specific genes and a decrease in smooth muscle cell markers 
(179,180). Bone morphogenetic proteins, BMP 2 and BMP 4,  
and Wnt signaling pathways are activated through 
up-regulation of transcription factor, Runt-related 
transcription factor 2 (RUNX2)/msh homeobox 2 (MSX-2).  
Cells produce matrix proteins. Crystallization starts in 

Figure 5 Hematoxylin and eosin stained paraffin section of 
a kidney from a rat made hyperoxaluric by feeding hydroxyl-
L-proline for 28 days (146). Sections were examined by light 
microscope equipped with polarizing optics (×4). (A) Hyperoxaluric 
rat. Renal tubules are full with birefringent CaOx crystals; (B) 
hyperoxaluric rat receiving apocynin. Only a few birefringent 
CaOx crystals are present. CaOx, calcium oxalate. 

A B
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membrane bound matrix vesicles produced by the viable 
transformed vascular smooth muscle cells or apoptotic 
bodies produced on their death (178,181,182). The 
vesicles are similar in composition to the matrix vesicles 
derived from chondrocytes and provide sites for the 
nucleation of CaP crystals (176). Once mineralized, the 
crystals poke through the limiting membrane of the 
vesicles and help mineralize the nearby ECM which 
sustains calcification. In addition to abnormal mineral 
metabolism, OS, inflammation and aberrant crystallization 
inhibition play significant role in vascular calcification. 
ROS are likely involved in the VSMC transformation to 
osteogenic phenotype by regulating RUNX-2 transcription 
factor (183,184). Advanced glycation end-products 
commonly seen in blood and arteries of diabetic patients 
and older individuals can promote vascular calcification 
mediated by NADPH oxidase induced ROS (185).  
Cytokines such as interleukin (IL)-1β, IL-6, IL-8, tumor 
necrosis factor (TNF)-α, transforming growth factor 

(TGF)-β produced by macrophages induce transformation 
of VSMCs (186). Inflammatory cells also produce 
proteolytic enzymes such as metalloproteinases (MMP)-2  
and -9 which degrade matrix and promote calcification 
(187-190). 

Calcification of vascular smooth cell is inhibited by 
MGP, pyrophosphate, OPN and Fetuin-A (179). MGP 
is a vitamin K-dependent protein functioning primarily 
as an inhibitor of vascular calcification (191). MGP also 
regulates BMP-2 activity (192). Mutations in the MGP 
gene lead to keutel syndrome, a disorder associated with 
extensive soft tissue and vascular calcification (193). 
MGP knockout mice die within two months as a result 
of arterial calcification and blood vessel rupture (194) 
while restoration of MGP in these mice prevents arterial 
calcification (195). Polymorphism of MGP may play a role 
in vascular calcification (196) and has shown an association 
with myocardial infarction (197). 

Fetuin A, a member of cystatin family of protease 

Figure 6 Urinary excretion of oxalate, osteopontin (OPN), monocyte chemoattractant protein-1 (MCP-1), and kidney injury molecule 
(KIM-1) by rats with hyperoxaluria induced by feeding hydroxyl-L-proline (HLP) (146) with or without apocyanin (HLP/Apo). There were 
significant reductions in the production of OPN, KIM-1, and MCP-1 by treatment with apocynin, an inhibitor of NADPH oxidase as well 
as an antioxidant.
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inhibitors, is a serum protein, produced by the liver and 
specifically enriched in mineralized tissues (198-200). 
Irrespective of its origin and posttranslational modifications 
fetuin-A prevents precipitation of hydroxyapatite in vitro (201).  
In vivo, serum fetuin A levels are lower in patients with 
CKD (202), and ectopic calcification is seen in fetuin A -/- 
mice (200). 

Cardiovascular complications are significantly increased 
in patients with CKD (203,204), and coronary artery 
calcification is considered an independent predictor of 
future cardiac event (205). Carotid atherosclerotic lesions of 
CKD patients frequently become calcified (206,207). The 
calcified plaques are more unstable and contain significantly 
lower amounts of collagen. Serum levels of MMPs are 
significantly increased (206-209). Enhanced calcification 
and reduced collagen, perhaps through the activities of 
MMPs, lead to plaque instability and rupture (206).

It is our hypothesis that stone formation is yet another case 
of pathological biomineralization. Renal epithelial cells under 
OS may become osteogenic (210) as happens to vascular 
smooth muscle cells during vascular calcification (177).  
The production of OPN (147,149), MGP (155,211), 
collagen, fribronectin, osteonectin and fetuin (unpublished 
results) by renal epithelial cells of rats with experimentally 
induced CaOx nephrolithiasis are indicative of such a 
transition. The presence of OPN, osteocalcin, fibronectin, 
and collagen (212) in stone matrices also suggests their 
increased production and excretion into the urine. Renal 
crystals in a CaOx stone patient were also associated 
with bone sialoprotein (BSP) (213). EMT (214) as well 
as endothelial to mesenchymal transition (215,216) are 
regularly seen in the diseased kidneys. Mesenchymal 
stromal cells have the ability to differentiate into osteoblast. 
Interestingly, perivascular cells or pericyte were heavily 
stained for MGP in kidneys of hyperoxaluric rats (211). 

Stone patients excrete lower amounts of fetuin-A (217), 
and more BMP-2 (218). Single nucleotide polymorphism 
of MGP gene is associated with CaOx kidney stones disease 
in the Japanese (219) and Chinese populations (220). Brush 
border membrane vesicles of renal epithelium promote 
nucleation of CaOx and CaP crystals in vivo as well as  
in vitro (221-223). 

Discussion and concluding remarks

Supersaturation is the driving force behind crystallization 
and in most idiopathic CaOx stone formers hypercalciuria, 
hyperoxaluria and hypocitraturia alone or in combination 

are the main abnormalities. As a result, most stone 
therapies attempt to lower urinary supersaturation with 
respect to the crystallizing salt, yet 30% to 50% stone 
patients still continue to form stones (224). The risk of 
stone recurrence increases with each new episode (225), 
and nearly all stone formers are expected to form another 
provided they live long enough after the first episode (226). 
Even initial interventions do not stop stone recurrence in 
about fifty percent of the patients (227,228). Apparently 
stone formation does not occur by a passive unregulated 
physicochemical mechanism, but by a regulated process, 
similar to pathological biomineralization at other sites in 
the body including kidneys during vascular calcification 
(172, 229,230). 

Renal epithelial cells are exposed to high oxalate and/
or CaOx and/or CaP crystals during stone formation. 
Experimental studies suggest that renal cellular exposure to 
high oxalate and/or CaOx or CaP crystals results in increased 
gene expression and production of molecules involved in 
tissue remodeling, inflammation and biomineralization 
(Figure 2). Hyperoxaluria and CaOx crystal deposition induce 
rennin upregulation and generation of angiotensin II (21). 
Non phagocytic NADPH oxidase is activated (14,22,231,232) 
leading to the production of ROS (5,231,233) which is 
mediated by protein kinase C (PKC) (232). The activation 
involves phosphorylation of p47phox and translocation of 
Rac1 (234) and p47 phox to the membrane. P-38 MAPK/
JNK transduction pathway is turned on (235,236), 
in addition to a variety of transcriptional and growth 
factors, including NFκB, AP-1, TGFβ, become involved 
(19,20,237). There is the generation of secondary mediators 
such as isoprostanes, cytoplasmic phospholipase A2 and 
prostaglandins (4,5,238), and an increased production 
of chemoattractants such as MCP-1 (132-134) and 
crystallization modulators OPN (134), bikunin (130,131), 
α1-microglobulin (152), IαI (151) and prothrombin 
fragment-1 (153). Macrophages infiltrate the renal 
interstitium around the crystal deposits and phagocytic 
NADPH oxidase is also activated producing additional ROS 
resulting in inflammation, ECM production and fibrosis. 
Clinical data also provide the evidence of ROS generation 
and byproducts of their activities have been detected in 
both the kidneys and urine of the patients who form CaOx 
kidney stones.

The macromolecules, produced on exposure to oxalate 
and or various types of crystals through ROS dependent 
pathways, have dual functions (Table 1). They regulate 
crystallization and are also involved in inflammatory 
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processes. For example, HS, an inhibitor of crystal 
aggregation and attachment, regulates ECM production 
(3,239). Bikunin, a constituent of ITI, an inhibitor of CaOx 
crystal formation and attachment, is a proteinase inhibitor, 
and stabilizes the ECM (240-242). THP a modulator 
of CaOx crystal nucleation, growth and aggregation, is 
renoprotective and present in the renal interstitium during 
many tubulointerstitial diseases (243). OPN, an inhibitor 
of crystal nucleation, growth and aggregation, is also a 
chemoattractant involved in inflammation and fibrosis 
(244,245). Prothrombin is the precursor of thrombin and 
fragments 1 and 2 and plays a major role in the recruitment 
and activation of infiltrating immune cells. Fragment-1 
is inhibitor of CaOx crystal growth and aggregation. 
Inflammation is primarily a protective response, therefore 
in the presence of impending mineralization, the body 
responds by producing macromolecules to inhibit 
crystallization and once crystal are formed to attract the 
inflammatory cells for their elimination (4,161,246). 
Crystals are phagocytosed and eliminated (246) or fenced in 
by a “wall” of macromolecules adsorbed to crystal surfaces 
rendering them harmless (247). This is likely the case with 
the interstitial plaques which are not attached to kidney 
stones and are common in the kidneys (32,36,47,248). 

In summary, disturbance in the physiochemical milieu 
leads to the production of ROS and development of OS. 
ROS start a signaling cascade culminating in the production 
of macromolecules to inhibit crystal nucleation, growth 
and aggregation. In case of transitory disorder, either no 
crystal will form or crystals formed will stay small, well 
dispersed and passed out as crystalluria particles. In the 
face of persistent disorder, for example, hyperoxaluria, 
hypercalciuria and hypocitraturia, there is a loss of the 
balance between oxidative and antioxidative forces. ROS 
induced damage to the cells leads to cell death and the 
formation of membrane bound vesicles which support 
crystal nucleation (221,249). As a result crystallization 
inhibitors which are produced may be defective or damaged 
by exposure to the free radicals and thus not able to 
provide adequate protection resulting in crystal growth 
and aggregation. Cell death also leads to the formation of 
new cells to repopulate the epithelium. The surfaces of 
the new cells as well as the exposed basement membrane 
are conducive to crystal attachment and retention (250). 
Crystals retained in the terminal collecting ducts produce 
Randall’ plugs (38,251) which will act as stone nidus when 
exposed to the pelvic urine. A recent study has shown that 
plugging is quite common in stones patients (37). 

As far as interstitial RPs are concerned, CaP crystals may 
originate in the tubular lumen, endocytose on the luminal side 
and exocytose on the basolateral side (213,251,252), to initiate 
the formation of the plaque. Alternatively renal epithelial 
cells under OS may become osteogenic (210). In addition to 
epithelium to osteoblast transformation, vascular endothelial 
cells may also become osteogenic (216). The transformed 
epithelial or endothelial cells will produce a membrane 
bound vesicle on the basolateral side of the epithelium. 
Renal epithelial cells have been shown to produce in vitro, 
CaP crystal deposits in the basement membrane under a 
variety of growing conditions (213,253,254). 

Calcification of the membrane vesicles and their 
aggregation produces calcified RP’s in the basement 
membrane of the renal tubules. ROS induced inflammation 
results in the formation of collagen which is deposited 
during fibrosis (255), and is an excellent nucleator of 
CaP (182,256) playing a critical role in biomineralization 
processes in the body (182,257). Calcification which starts 
with membrane bound vesicles is propagated through the 
mineralization of collagen (35). Mineralization of collagen 
leads to the growth of the plaque, which eventually reaches 
the papillary epithelium, ulcerates to the surface and 
develops into a stone nidus. Once exposed to the pelvic 
urine, the plaque is overgrown by CaOx crystals, and 
promotes the formation of an idiopathic CaOx kidney stone 
attached to the sub-epithelial RP (258). 
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