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SARMs: history and mechanisms

Since their discovery near the close of the 20th century (1), 
selective androgen receptor modulators (SARMs) have been 
heralded as the possible future of androgen therapy (2). As 
satisfaction, side effects, preparations, and perceptions have 
limited the utility of testosterone therapy (TTh), SARMs 
are poised to fundamentally alter the field of androgen 
therapy (2).

SARMs are chemically engineered small molecule 
drugs that can selectively exert varying degrees of agonist 
and antagonist effects on the androgen receptor (AR) 
throughout the body. Like androgens, SARMs enter the 
cytoplasm and bind to the AR. After translocating to the 
nucleus, the SARM-AR complex acts as a transcriptional 

regulator and recruits cofactors and coregulatory proteins, 
modulating the transcriptional response to binding of the 
AR complex (3,4). While the AR is universally expressed, 
SARM-AR complexes can have varied effects due to variable 
cofactor recruitment (5). These complex configurations, 
along with tissue-dependent differences in AR expression 
patterns and regulatory milieu, allow for immense diversity 
of actions (4).

SARMs promise novel, convenient therapies that 
facilitate tissue-specific benefits without off-target side 
effects (6). Given the myriad drawbacks of TTh that can 
limit its use, including currently available formulations and 
common adverse effects, one can understand the excitement 
surrounding SARMs. Although still in the early stages of 
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clinical evaluation, SARMs may one day be used in the 
treatment of hypogonadism in a form that is orally active 
with convenient dosing frequency, and that can provide the 
beneficial effects of TTh without the adverse effects (2).

In addition to their potential use for the treatment 
of hypogonadism (7,8), SARMs are being explored as 
a potential therapy for osteopenia/osteoporosis (9-14),  
A lzhe imer ’s  d i sease  (15) ,  pros ta te  cancer  (PCa) 
(16,17), benign prostatic hyperplasia (BPH) (18), male 
contraception (19), breast cancer (20), stress-induced 
urinary incontinence (21), sarcopenia (22), muscular 
dystrophy (23,24), and even cancer and chronic disease-
related cachexia (25-30). While SARMs present an 
opportunity for therapy in several debilitating conditions, 
recently doubts  concerning their  abi l i ty  to meet 
expectations have surfaced, especially concerning their 
utility in the treatment of cachexia.

Despite their potential to address significant unmet 
medical needs, regulatory roadblocks and poorly defined 
clinical study endpoints have tempered interest in the 
potential of SARMs for the first time since their discovery. 
Indeed, some now refer to the once-promising pathway to 
approval of SARMs as a “long and winding” one (31). More 
recently, the focus of using SARMs for cachexia has shifted 
to other clinical applications. The present review provides 
an overview of the developments in the literature and 
clinical trials on SARMs and offers a glimpse into the future 
therapeutic potential for SARMs.

Methods

A literature review was performed in the PubMed/Medline 
and ScienceDirect databases using the terms selective AR 
modulator, selective AR modulators, SARM, and SARMs. 
The initial search for literature resulted in 764 results. A 
total of 43 non-English language papers have been excluded. 
The remaining articles were screened for relevance and 97 
were selected for inclusion in the review. Both basic and 
clinical studies have been included. Ongoing and recently 
concluded clinical trials listed on http://www.clinicaltrials.
gov that are investigating SARMs were also reviewed and 
are compiled in Table 1.

The AR & SARMs

The AR, a nuclear steroid hormone receptor and 
transcription factor, is found in both reproductive and non-
reproductive tissues of the human body. However, while 

the AR itself is widely expressed throughout the human 
body, the cofactors required for modulation of AR activity 
are not. The variability in expression of these coregulatory 
components is complex and allows for tissue-specific, 
targeted therapeutic effects (5). The mechanisms of how 
SARM-AR complex activity and coregulation function to 
modulate gene expression and physiologic effects remain 
to be elucidated. The AR is essential both for its role in 
male sexual development and maintenance but also has 
the potential to alter bone density, strength, muscle mass, 
hematopoiesis, coagulation, metabolism, and cognition 
(26,27). The complex regulatory environment of the AR 
allows selective receptor modulators (SRMs) to act as either 
agonists or antagonists, depending on the tissue and the 
expression of cofactors (3,32).

The first class of SRMs to be discovered was Selective 
Estrogen Receptor Modulators (SERMs) (33), which 
are best known for their use in breast cancer treatment 
(tamoxifen). The successful development of SERMs charted 
a course for the manipulation of nuclear receptor signaling 
in both men and women, and has been followed by the 
discovery of SARMs (1), Selective Progesterone Receptor 
Modulators (SPRMs) (34), Selective Glucocorticoid 
Receptor Modulators (SGRMs) (35), Farnesoid X receptor 
modulators (36), and others.

Tissue selectivity is a critical distinction between classic 
steroid hormone therapy and AR modulation. While TTh 
offers benefits including gains in muscle mass and strength, 
it is associated with a high rate of adverse effects, partly due 
to off-target activation of AR in several tissues (4), and TTh 
currently lacks a highly effective oral formulation. TTh has 
also been associated with risks including testicular atrophy, 
erythrocytosis, dyslipidemia, gynecomastia, hepatotoxicity, 
and, in women, virilization and uterine hyperproliferation 
(32,37,38). Meanwhile, SRMs/SARMs target AR function 
in specific tissues and cell types while minimizing effects on 
non-target tissues (6).

SARMs can be administered orally or transdermally (8), 
are mostly non-steroidal, and are capable of activating the 
AR in both muscle and bone. However, because they are not 
metabolized to dihydrotestosterone (DHT) by 5 -reductase, 
the risk of androgenic effects is reduced (27,38). In addition, 
SARMs are not metabolized to estrogen by aromatase, 
limiting estrogenic effects (30). While the benefits of first-
generation SARMs appear modest compared to those of 
androgens (39), the ability of SARMs to preferentially 
stimulate bone and muscle growth, shrink the prostate, and 
inhibit breast cancer growth without significant systemic 

http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
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side effects is encouraging (40-46). Given that the treatment 
of many chronic diseases for which SARMs have been 
considered requires extended exposure, the apparent lack 
of significant adverse effects with SARMs as compared to 
androgens gives them a distinctive advantage.

Current and future clinical applications of 
SARMs

Osteoporosis

While existing therapies for osteoporosis are anti-
resorptive, capable of halting bone breakdown but not 
reversing the process, multiple SARMs have demonstrated 
the ability to promote new bone growth and increase 
bone strength in animal models (9-13,47,48). Recently, 
four SARMs—BA321, YK11, ostarine, and LY305—have 
shown promise in the potential treatment of osteoporosis. 
These are listed in Table 2. BA321 can reverse bone loss 
without androgenic effects by binding to both AR and 
estrogen receptors (ER) in orchiectomized mice (13). Yatsu 
et al. described YK11, which can accelerate osteoblast cell 
proliferation via AR-mediated non-genomic activity (14). 
When mouse osteoblast cells (MC3T3-E1) were treated 
with YK11, it also promoted osteogenic activity, increased 
osteoblast-specific differentiation markers, and increased 
alkaline phosphatase (ALP) activity (a marker of osteoblast 
maturation) (14). 

Hoffmann et al. investigated the bone-strengthening 
properties of ostarine (Enobosarm) in a rat model of 
postmenopausal osteoporosis (11). Eight weeks after 
ovariectomy, female rats were treated daily with low, 
intermediate, or high doses of ostarine for 5 weeks, with the 
low dose group showing no benefit, while the intermediate 
and high dose groups showing comparable improvements 
in microstructural indices including bone volume, density, 
and bone mineral density. These improvements were more 
significant in the femurs than in the vertebrae, although no 
significant improvements were observed in biomechanical 
properties (11).

In another study, LY305 reversed skeletal muscle atrophy 
and demonstrated increased bone formation in a bone 
fracture orchiectomized mouse model (8). LY305 was 
subsequently administered transdermally to humans in a 
phase I trial in order to circumvent high first-pass hepatic 
concentrations, which may contribute to dose-dependent 
suppression of high-density lipoprotein (HDL) observed 
with other oral SARMs (27,28). In this study by Krishnan 

et al., men who applied increasing doses of LY305 gel to 
the axilla or trunk daily for up to 4 weeks experienced 
minimal adverse effects and saw no change in HDL levels 
or hematocrit (8). Utilizing transdermal delivery to limit or 
prevent alterations in HDL is a significant step forward for 
the utility and safety profile of SARMs, given that changes 
in HDL levels are the most significant adverse effect of 
SARMs observed to date.

Alzheimer’s disease

Androgen depletion is implicated in the development of 
Alzheimer’s disease, as circulating testosterone levels in 
older men are inversely correlated with levels of amyloid 
β (Aβ) protein in the brain (15). Hypogonadal men also 
experience a decrease in cognitive processes including 
episodic memory, working memory, processing speed, 
visual-spatial processing, and executive function (49,50), 
while a higher free testosterone index is associated 
with improved visual and verbal memory, visuospatial 
functioning, visual-motor scanning, and a lower rate of 
decline in visual memory (51). Given that these functions 
are regulated by AR-modulated regions of the brain (52), 
the potential impact of SARMs as a treatment for cognitive 
disorders associated with hypogonadism is significant. In 
2013, the NEP28 SARM was found to increase the activity 
of an Aβ-degrading enzyme, neprilysin, without severe 
effects on the prostate (15). However, no further studies 
have investigated this compound.

Breast cancer

Improved breast cancer outcomes have been associated with 
increased androgen synthesis (53). However, androgens 
can also cause virilization in women. Being analogous to 
SERMs, which have differential effects on breast, bone, and 
uterine tissues (31), SARMs also exert their effects on breast 
tissue that expresses AR. Fortunately, improved breast 
cancer survival is correlated with AR expression (54), which 
occurs in up to 85% of ER-positive breast cancers and 95% 
of ER-negative breast cancers (55). This presents a unique 
opportunity for modulation by SARMs. In a press release 
from GTx Inc. regarding a recently completed phase II 
clinical trial (NCT02463032), Enobosarm slowed breast 
cancer growth in a subset of patients (20). Another ongoing 
phase II trial seeks to assess the treatment of AR-positive 
metastatic triple-negative breast cancer using cotherapy of 
pembrolizumab and Enobosarm (NCT02971761). Other 
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recently completed clinical trials examining SARM efficacy 
include: NCT02746328, which assessed the impact of 
12–24 weeks of GTx-024 (Enobosarm) on neuromuscular 
function and lean body mass (LBM) in females with ER+/
AR+ breast cancer, and NCT03264651, a completed phase I 
study which studied the impact of a combination treatment 
of 9 mg oral Enobosarm and 1 mg oral anastrozole on 
reducing breast density.

Stress urinary incontinence (SUI)

The efficacy of SARMs on levator ani muscle weight has 
been used as a surrogate for anabolic activity in skeletal 
muscle (38). However, the levator ani is also a key muscle 
in the pathophysiology of SUI. As women age, circulating 
hormones are depleted postmenopausally and pelvic floor 
muscles atrophy. Lacking support of the pelvic organs and 
the lower urinary tract, difficulty with micturition results. 

Table 2 Potential applications of SARMs

Drug name(s) Potential applications Subject of trials Route Clinical trials identifier Trials progress

BA321 Osteoporosis Animal SubQ N/A –

YK11 Osteoporosis In vitro/gene assay N/A N/A –

LY305 Osteoporosis, muscle 
wasting, DMD

Animal/cadaver/human Gel Not listed Phase 1

Ostarine/Enobosarm Osteoporosis Animal Oral N/A –

Enobosarm/GTx-024 SUI Human Oral NCT02658448
NCT03241342

Phase 2

GTx-027 (GTx-024 analog) SUI Animal Oral N/A –

Enobosarm/GTx-024 Breast cancer Human Oral NCT02463032
NCT02746328
NCT02971761
NCT03264651

Phase 2

NEP28 Alzheimer’s In vitro/animal SubQ N/A –

GTx-026 (analog GTx-024 
analog)

DMD Animal Oral N/A –

GLP0492 DMD In vitro/animal SubQ N/A –

OPK-88004 BPH Human Oral NCT03297398 Phase 2

LY2452473 Prostate cancer Human Oral NCT02499497 Phase 2

S42 Prostate cancer In vitro N/A N/A –

FL442 Prostate cancer In vitro/animal Oral N/A –

MK-4541 Prostate cancer In vitro/animal Oral N/A –

LGD2226 Sexual medicine Animal Oral N/A –

S-23 Contraception Animal Oral/IV N/A –

S42 Muscle wasting In vitro N/A N/A –

GSK2881078 Muscle wasting Human Oral NCT02045940
NCT03359473

Phase 1
Phase 2

GTx-024/Enobosarm Muscle wasting Human Oral NCT01355497
NCT01355484

Phase 3
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Due to virilization and uterine hyperplasia, androgens are 
not an optimal treatment option for SUI, and presently 
no other medical therapies exist. Two SARMs, GTx-
024 (Enobosarm) and GTx-027 (GTx-024 analog), have 
demonstrated preclinical potential for the treatment 
of SUI by selectively increasing pelvic floor mass in an 
ovariectomized mouse model (21). Reversal of muscle loss 
in post-menopausal mice was accompanied by a substantial 
downregulation of genes linked to muscle catabolism. This 
study presented a step toward the clinical evaluation of 
SARMs for the treatment of SUI, a problem that affects up 
to 35% of adult women (56).

Following a promising proof of concept study, a phase 
II clinical trial (NCT03241342; ASTRID) of GTx-024 was 
initiated. Post-menopausal women were placed on either 
placebo, 1 mg, or 3 mg oral GTx-024 therapy, and change in 
stress continence episodes from baseline was examined (57).  
Unfortunately, the study failed to meet its primary endpoint 
of achieving a 50% reduction in SUI daily episodes 
compared to the placebo. Two subsequent phase II studies 
(NCT03566290, NCT03508648) were terminated the same 
month, per http://www.clinicaltrials.gov. As such, the role of 
SARMs in the treatment of SUI is currently undefined. 

Pca

Controversy still exists regarding whether TTh may 
stimulate latent PCa, limiting the application of TTh in 
the treatment of hypogonadism in men with a history of 
PCa (4,17). Solomon et al. recently reviewed two SARMs, 
FL442 and MK-4541, which have been tested/explored 
as treatments for PCa. FL442 acted as an AR antagonist 
in the PCa cell models with efficacy comparable to that 
of enzalutamide (4,58). Meanwhile, MK-4541 induced 
apoptosis in androgen-independent, AR-positive PCa cell 
lines (59).

The S42 SARM has emerged as a prospective treatment 
for PCa. Upon its initial discovery, S42 was observed to have 
anabolic effects on muscle while sparing the prostate (60).  
Only years later was its potential for PCa treatment 
considered in its suppression of PCa cell proliferation 
signaling components, including the 5-DHT-induced 
(extracellular signal-regulated kinase (ERK)–mitogen-
activated protein kinase (MAPK) pathway (17,61). In 
addition, S42 inhibited tumor growth by limiting the 
expression of prostate-specific antigen (PSA), P504S, Ki67, 
and phosphorylated ERK-MAPK (17). S42 also attenuated 
proliferation-related receptors, including insulin-like growth 

factor-1 receptor (IGF-1R), insulin receptor, and the AR. 
While S42 reduced tumor growth and antagonized DNA 
replication in PCa cells, it did not induce apoptosis (17).  
One phase II clinical trial (NCT02499497) is investigating 
the efficacy of the SARM LY2452473 in improving 
symptom management in men with PCa, including sexual 
function, quality of life, and muscle and bone mass.

SARMs may also be used in the setting of PCa 
management for the targeted imaging of prostate tissue (62).  
Given the expression of the AR in every stage of PCa 
evolution, radioactively-labeled SARMs could be used for 
the radiological diagnosis of metastatic disease (63). These 
findings suggest another future benefit of SARMs in the 
evaluation and treatment of PCa.

BPH

One can envision the potential utility of SARMs as 
a treatment for BPH by acting as an AR antagonist. 
Zilbermint et al. observed that because SARMs are not 
metabolized to DHT by 5 -reductase, the risk of prostatic 
hyperplasia is reduced (30). While previous studies have 
observed that SARMs can decrease prostatic weight 
in rat models (18,43), a single phase II clinical trial 
(NCT03297398) was recently initiated to study the efficacy 
and safety of OPK-88004 in men with BPH. In the trial, 
patients were treated with either a placebo, 15, or 25 mg of 
OPK-88004 for 16 weeks. Monthly visits evaluated drug 
safety and plasma levels, as well as its effect on prostate size 
and lower urinary tract symptoms (LUTS). Unfortunately, 
this trial has since been terminated, and a press release 
disclosed that while serum PSA analysis has yet to be 
completed, the utilization of transrectal ultrasound for 
measuring prostate volume proved to be too imprecise to 
reliably determine the effect of the drug (64). In addition, 
transient increases in liver enzymes were observed in several 
men in the trial.

Male contraception

The prospect of SARMs as a method of male contraception 
has been yet another focus of investigation, especially 
given their apparent lack of significant side effects. Animal 
studies of two SARMs, C-6 and S-23, were examined by 
Solomon et al. in a recent review (4). In mouse models, 
S-23 demonstrated the potential to reversibly suppress 
spermatogenesis while also increasing lean muscle mass, 
bone mineral density, and decreasing fat mass (65). While 

http://www.clinicaltrials.gov
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SARM development appears to be focused on other areas of 
intervention, these preliminary findings are promising.

Hypogonadism and sexual medicine

SARMs may represent a promising potential alternative 
to TTh, which has been the mainstay of the treatment of 
hypogonadism. While the sexual benefits of TTh are well 
established, unlike exogenous testosterone, SARMs are 
orally active, nonaromatizable, non-virilizing, and tissue-
selective, with a better side effect profile than TTh (66). 
Previous studies have demonstrated the potential benefit of 
SARMs for libido in both female and male rats (67,68). In 
one study, treatment of male rats with the SARM LGD2226 
resulted in an increased number of mounts, intromissions, 
and ejaculations compared with a control group (68). These 
results did not differ significantly from a group treated 
with the synthetic androgen, fluoxymesterone, suggesting 
that SARMs may represent a viable alternative to TTh in 
promoting male libido (4).

As elaborated upon in other sections of this review, many 
SARMs have shown the potential to treat male hypogonadal 
symptoms such as deficits in muscle mass and bone mineral 
density (10,69). Among others, the SARMs enobosarm and 
LY305 have shown the capacity to reverse the hypogonadal-
related decline of muscle mass and bone density. LY305 
did so while simultaneously avoiding adverse effects 
demonstrated by other SARMs such as decreased HDL 
and increased hematocrit. However, approval for SARMs 
in the treatment of male hypogonadism likely hinges upon 
“defining what constitutes a clinical deficit in these hypogonadal 
symptoms, and…defining what qualifies as a clinical benefit in 
ameliorating them” (31).

Duchenne muscular dystrophy (DMD)

DMD is a crippling genetic disorder that causes progressive 
muscle wasting and weakness because of mutations in 
the cytoskeletal protein dystrophin. Corticosteroids are 
currently the standard of care, but one side effect of their 
prolonged use is muscle wasting. The anabolic benefits of 
SARMs to muscle and bone without off-target androgenic 
side effects provides a distinct advantage to androgens. 
Previous work found that GLP0492 can increase body 
weight, muscle mass, diaphragm contractile force, and 
running performance in mice (4,23). In addition, as noted 
previously, LY305 reversed skeletal muscle atrophy by 
utilizing transdermal delivery, thus avoiding a rise in HDL.

In a comprehensive study, Ponnusamy et al. hypothesized 
that the absence of anabolic androgen activity exacerbated 
the rapidly diminishing health of young boys with DMD 
and that SARM treatment could reverse the decline in 
physical function and prolong life (24). When GTx-
026, an analog of GTx-024, was used in castrated and 
dystrophin mutant mice, a decrease in fibrosis and increases 
in cardiopulmonary function, body weight, lean mass, grip 
strength, and survival were observed (24). GTx-026 was 
found to exert its effects through a pathway distinct from 
dystrophin-regulated pathways (24). In addition, SARM 
treatment had the potential to improve muscle regeneration, 
as measured by a reduction in centrally nucleated muscle 
cells (24).

Muscle wasting

The use of SARMs as a potential alternative to TTh for 
cancer-related cachexia or age-related sarcopenia has been 
desirable since their discovery (2,28,70). Due to their 
selective anabolic activity without associated androgenic 
side effects, SARMs may treat muscle wasting associated 
with many chronic conditions including heart failure, 
chronic obstructive pulmonary disease (COPD), HIV, 
end-stage liver and kidney disease, chronic infection, 
immobilization, and chronic glucocorticoid use (4,69,71). 
Studies have demonstrated that survival of cancer patients 
correlates directly with muscle mass (72-74) and that 
sarcopenia is associated with increased mortality (75). As 
such, testosterone is approved for the treatment of these 
conditions. However, recent clinical trials have suggested 
that the cardiac risks of TTh outweigh its therapeutic 
benefits (76,77). Although this controversy has not been 
resolved, SARMs are being considered instead of TTh 
to address the problem of muscle wasting. While early 
preclinical models showed SARMs to be effective in 
ameliorating muscle wasting by increasing lean body mass, 
recent clinical studies have cast doubt on their outlook.

Several phase I studies have recently evaluated the safety, 
tolerability, pharmacokinetics, and pharmacodynamics 
of the SARM GSK2881078. In a study by Clark et al. 
(NCT02045940), a dose range of oral GSK2881078 was 
administered to healthy men and postmenopausal women 
for either 7 or 14 days and was associated with decreases in 
HDL, similar to what has been observed with other SARMs 
(4,19,78). Adverse events were noted in half of the study 
population, though these were distributed evenly between 
the placebo and active treatment groups, indicating that 
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the dose range was well tolerated (78). These early trials 
demonstrate a potential role for GSK2881078 in cachexia 
therapy.

In another phase I clinical investigation of GSK2881078, 
gains in lean mass were evaluated at various doses (29). 
While both male and female patients on all doses of 
GSK2881078 experienced greater lean mass gains than 
those on placebo, lower doses resulted in greater lean 
mass responses in females than in males (29). These 
dose-dependent gains were produced in the absence of 
any resistance training. Transient elevations in alanine 
aminotransferase (ALT) were observed but resolved 
despite continuing the drug, and reversible reductions in 
testosterone levels were observed in all men. Finally, a phase 
II trial (NCT03359473) evaluating the efficacy and safety of 
GSK2881078 in COPD is currently underway. In addition 
to safety, this trial is evaluating the effects of GSK2881078 
on physical strength and function in both postmenopausal 
female and older male subjects with COPD and muscle 
weakness. These subjects will participate in a baseline period 
for 30 days, after which they will follow a home exercise 
program and treatment for 13 weeks, followed by a 6-week 
follow-up period during which subjects’ performance in 
various trials will be evaluated, such as leg press strength 
and vitals.

A recent study by Muta et al. examined the impact of a 
novel SARM, S42, on the muscle cell line C2C12 in vitro, 
which was observed to have anabolic and anti-catabolic 
effects on myotubes of differentiating muscle cells (22). 
The anti-catabolic effects consisted of inhibition of the 
degradation pathway in C2C12 myotubes and decreased 
expression of skeletal muscle ubiquitin ligase. The anabolic 
effects of S42 included activation of the mTORC1–p70S6K 
signaling pathway, independent of IGF-1-Akt signaling. 
S42 may selectively encourage muscle growth while 
simultaneously minimizing certain undesirable effects such 
as prostate growth (22). These in vitro results hint at the 
ability of SARMs to both prevent muscle loss and induce 
muscle gains in patients who suffer from muscle wasting 
conditions.

Unfortunately, results of recent clinical trials of the 
SARM GTx-024 (Enobosarm) have tempered expectations 
for its utility as a therapy for muscle wasting. Early on, 
GTx-024 appeared to have a very bright future as a 
treatment for sarcopenia/cachexia. Preliminary clinical trials 
demonstrated that GTx-024 could increase lean body mass 
and improve physical function without androgenic side 
effects (27). However, Enobosarm was dealt a blow after 

the phase III Prevention and treatment Of muscle Wasting 
in patients with cancER (POWER) I and II trials, where 
increases in lean body mass were once again observed, but 
without improved stair climb power (79,80). Failure to 
attain both primary endpoints led to a lack of approval by 
the Food and Drug Administration (FDA), which has cast 
doubt on the previously charted course for SARMs and has 
tempered enthusiasm regarding the role of SARMs in the 
treatment of muscle wasting conditions.

Cachexia controversy

In 2015, Bhasin noted that “functional exercise training may 
be necessary to translate the physiological benefits of SARMs into 
functional improvements” (39). Indeed, following the recent 
challenges for SARMs and cachexia, a similar concern 
was shared by Ramage & Skipworth, who noted that “The 
relationship between muscle mass and muscle function is complex 
and unlikely to be linear” (80). Again, Dalton et al. lamented 
that “proving that SARM-induced increases in lean body mass 
(i.e., muscle) are associated with improvements in physical 
function appears to the greatest barrier to their regulatory 
approval and clinical use” (31).

While the results of the phase III POWER trials 
demonstrated that Enobosarm (GTx-024) could induce 
measurable and meaningful gains in lean body mass, there 
was no significant accompanying improvement in physical 
function (31). Presumably, this is due to confounding 
factors including age, disease stage, baseline physical 
function, and chemotherapy, but the fact remains that a 
definitive correlation between lean body mass and physical 
function in a large patient population has “remained elusive 
for a SARM” (31). This barrier, however, extends beyond 
just SARMs. At this time, no drug has been approved 
by the FDA to treat cancer cachexia (71). Indeed, in the 
ROMANA anamorelin trials, significant increases in LBM 
were not accompanied by gains in handgrip strength (81). 
Therefore, in trials of both Enobosarm and anamorelin, 
despite measurable gains in LBM, lack of correlated 
improvements in physical function resulted in a negative 
regulatory interpretation of the trials and lack of FDA 
approval (71). Merely preventing a decline in performance 
was also not considered to be an acceptable outcome (82).

One of the most significant obstacles for approval of 
SARMs as a future treatment for cachexia is both a lack 
of consensus on proper endpoints for clinical trials and a 
drought of regulatory direction (71,82). Unfortunately, 
these shortfalls have led to the standstill of many promising 
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drugs in spite of a significant unmet medical need (71). 
Given that cachexia is defined by the presence of three 
essential elements: muscle loss and change in body 
composition, impaired nutrition, and decline in physical 
function (83), it has been suggested that treatment best be 
evaluated simply by patient responses to these domains. 
It should be noted that, despite the logic that proper 
nutrition be accompanied by exercise to achieve functional 
gains, one systematic review found “insufficient evidence 
in the safety and effectiveness of exercise in cancer cachexia 
patients” (84). Therefore, the requirement that a SARM 
must improve physical function in order to gain approval 
may be unreasonable. As such, to push forward with well-
designed clinical trials that further define the efficacy of 
SARMs in cachexia and sarcopenia, appropriate clinical 
trial endpoints must be developed.

Potential for abuse

Performance-enhancing drugs, such as exogenous 
testosterone, have long been a concern in professional 
athletics and have resulted in anti-doping measures. 
SARMs, with their attractive side effect profile, ease of 
use, and relative difficulty to detect compared to other 
androgenic compounds, present a significant potential for 
abuse (85,86). Indeed, despite not being approved by the 
FDA, SARMs are readily available for purchase online (4). 
However, though marketed as SARMs, one study found that 
many of these online offerings are inaccurately labeled and 
contain unapproved substances, with only 52% containing 
the active SARM (87). Conversely, ostarine has been found 
as both a listed and unlisted ingredient in many dietary 
supplements (88).

As such, efforts are currently focused on continuing to 
isolate metabolites from novel SARMs for drug testing 
(89,90), and multiple SARMs have already been added 
by the World Anti-Doping Agency (WADA) to the 
Prohibited List (91). Consequently, several athletes have 
been suspended for testing positive for SARM metabolites; 
an NBA athlete was recently suspended for taking LGD-
4033 (92), while an NCAA basketball player and four UFC 
fighters have been penalized for trace amounts of ostarine 
(Enobosarm) in their systems (88,93). As novel SARMs 
are discovered and become available, regulating their use 
may become a challenge. Furthermore, once FDA approval 
occurs, significant potential for off-label use is likely, 
depending on the drug and its effects.

Conclusions

Widely expressed throughout the human body, the AR plays 
a role in sexual development and many other processes 
such as growth and maintenance of muscle and bone. 
Tissue-dependent patterns of AR expression, along with 
varied transcriptional coregulation, allow for diversity of 
actions when the AR is combined with its ligand. SARMs 
are chemically engineered drugs that can selectively exert 
varying degrees of agonist and antagonist effects on the 
AR, depending on their structure. This allows for targeted 
therapeutic benefits with the absence of adverse off-target 
effects, which is currently a significant limitation of TTh. 
SARMs are well tolerated, and their oral bioavailability 
provides a substantial advantage over other methods of 
androgen therapy. Finally, the potential for transdermal 
administration may circumvent hepatic metabolism and 
negate decreases in HDL, one of the only significant side 
effects of SARMs observed to date.

SARMs have demonstrated the ability to preferentially 
stimulate bone and muscle growth, shrink the prostate, and 
inhibit breast cancer growth. This variety of tissue selectivity 
may enable SARMs to treat a wide range of diseases, from 
muscle wasting and osteoporosis to hypogonadism and BPH. 
However, while SARMs have shown potential to ameliorate 
numerous serious and therapy-deficient pathologies, 
much remains to be examined regarding their efficacy, 
and regulatory approval remains elusive. The future use 
of SARMs for treatment of cachexia is currently tentative 
because of a lack of consensus regarding endpoints for 
clinical trials. As such, the future of SARMs may hinge on 
their use for other indications such as PCa, breast cancer, 
and osteoporosis. Nevertheless, there is still considerable 
confidence that SARMs have the potential to provide 
revolutionary treatment for diverse medical challenges.
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