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Abstract: In radiotherapy (RT) of prostate cancer, dose escalation has been shown to reduce biochemical 
failure. Dose escalation only to determinate prostate tumor habitats has the potential to improve tumor 
control with less toxicity than when the entire prostate is dose escalated. Other issues in the treatment of the 
RT patient include the choice of the RT technique (hypo- or standard fractionation) and the use and length 
of concurrent/adjuvant androgen deprivation therapy (ADT). Up to 50% of high-risk men demonstrate 
biochemical failure suggesting that additional strategies for defining and treating patients based on improved 
risk stratification are required. The use of multiparametric MRI (mpMRI) is rapidly gaining momentum in 
the management of prostate cancer because of its improved diagnostic potential and its ability to combine 
functional and anatomical information. Currently, the Prostate Imaging, Reporting and Diagnosis System 
(PIRADS) is the standard of care for region of interest (ROI) identification and risk classification. However, 
PIRADS was not designed for 3D tumor volume delineation; there is a large degree of subjectivity and 
PIRADS does not accurately and reproducibly elucidate inter- and intra-lesional spatial heterogeneity. 
“Radiomics”, as it refers to the extraction and analysis of large number of advanced quantitative radiological 
features from medical images using high throughput methods, is perfectly suited as an engine to effectively 
sift through the multiple series of prostate mpMRI sequences and quantify regions of interest. The radiomic 
efforts can be summarized in two main areas: (I) detection/segmentation of the suspicious lesion; and (II) 
assessment of the aggressiveness of prostate cancer. As related to RT, the goal of the latter is in particular 
to identify patients at high risk for metastatic disease; and the aim of the former is to identify and segment 
cancerous lesions and thus provide targets for radiation boost. The article is structured as follows: first, we 
describe the radiomic approach; and second, we discuss the radiomic pipeline as tailored for RT of prostate 
cancer. In this process we summarize the current efforts and progress in integrating mpMRI radiomics into 
the radiotherapeutic management of prostate cancer with emphasis placed on its role in treatment target 
definition, treatment plan strategizing, and prognostic assessment. The described concepts, methods and 
tools are not currently applicable to the radiation oncology practice outside of the research setting. More 
data are required in the form of clinical trials to assess the robustness of radiomics-based predictive models, 
and to maximize the efficacy of these models. 
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Introduction

In 2018, approximately 164,690 men in US will be 
diagnosed with prostate cancer and approximately 29,500 
men will die of the disease (1). About half of these patients 
will be treated with radiotherapy (RT). Prostate cancer 
has a long natural history and the consequences of local 
persistence may not be realized for many years; but the 
relationship between local persistence, biochemical failure, 
distant metastasis and mortality has been established  
(2-7). There is significant evidence in support of doses of  
76 Gy or higher for primary treatment of localized prostate, 
and doses above 80 Gy increase biochemical control  
(8-10). There is also some evidence to support the theory 
that regions in the prostate with the greatest tumor burden 
are at highest risk of harboring persistent disease after RT 
(6,7,11,12). Limiting the highest radiation doses to the gross 
tumor volume (GTV), as opposed to whole prostate, is 
hypothesized to result in equivalent tumor control without 
increasing side effect (13,14). A recent meta-analysis of 
22 published studies describing 1,378 patients treated 
with radiation boost to the dominant intraprostatic lesion 
(MRI-visible GTV), while acknowledging the limitations 
inherent due to the heterogeneity of the study, concludes 
that there are encouraging results for focal dose escalation 
with acceptable short- to medium-term side effects and 
biochemical disease control rates (15). While contemporary 
treatment methods, such as intensity-modulated RT 
(IMRT), are used to deliver radiation with high accuracy, 
defining the position and the extent of the tumor is still 
quite challenging. Other issues in the treatment of the RT 
patient include the choice of the RT technique (hypo- or 
standard fractionation) and the use and length of androgen 
deprivation therapy (ADT) (16,17).

In this review, we summarize the efforts in quantitative 
MRI analysis of the prostate to: (I) improve tumor targeting 
in RT; and (II) optimize the treatment strategies by better 
risk stratification. Multiparametric MRI (mpMRI) is 
becoming widely integrated in the daily management of 
prostate cancer and used for detection, localization and 
staging of the disease. mpMRI consists of sequences for 
dynamic contrast enhanced-MRI (DCE-MRI), diffusion 
via diffusion-weighted imaging (DWI) and anatomical 
information [T2-weighted (T2w) MRI] (18,19).

Currently, the Prostate Imaging, Reporting and 
Diagnosis System (PIRADS) is the standard of care for 
region of interest (ROI) identification and risk classification 
(20,21). PIRADS was not designed for a 3D tumor volume 

delineation. Typically, a lesion is described in the radiologist 
report by its location and PIRADS score assigned (1 to 5). 
For GTV delineation, the precise contours of the tumor 
are needed. Further, the five-score system does not tap into 
the wealth of quantitative imaging information contained 
in the multiple sequences of mpMRI, nor does it elucidate 
intralesional spatial heterogeneity. 

“Radiomics”, as it refers to the extraction and analysis 
of large number of advanced quantitative imaging 
features from medical images using high throughput 
methods (22,23), can probe and capture inherent tissue 
characteristics in the multiple series of prostate mpMRI 
and quantify the regions of interest (24). The radiomics 
efforts can be summarized in two main areas: (I) detection/
segmentation of the suspicious lesion; and (II) assessment 
of the aggressiveness of prostate cancer. As related to RT, 
the goal of the latter is in particular to identify patients at 
high risk for metastatic disease; and the aim of the former is 
to identify and segment cancerous lesions and thus provide 
targets for radiation boost. The remainder of the paper 
is structured as follows: first, we give an overview of the 
radiomic approach. Then, we discuss the radiomic pipeline 
as tailored for RT of prostate cancer. Next, we summarize 
the current efforts in RT of prostate cancer for automatic 
delineation of GTV and tumor aggressiveness assessment. 
Furthermore, we introduce delta radiomics as promising 
tool for RT outcome prediction in prostate cancer. Finally, 
we conclude the review by highlighting the challenges and 
potentials of radiomics in RT management of prostate 
cancer. 

Radiomics

Radiomics, as applied to oncology, is a type of quantitative 
medical image analysis that exploits image “features” as 
biomarkers to aid in tumor detection and localization as well 
as prediction of treatment response. The quantitative image 
characteristics that serve as radiomic features, some of which 
cannot be discerned by eye of even the expert radiologist, 
range broadly from semantic to morphological to statistical 
to transform-based in nature (25-27). In contrast to biopsy 
procedures, non-invasive imaging methods such as CT, PET 
and MRI afford assessment of spatial variability throughout 
the entire three-dimensional volume of the tumor, which 
is very important as tumor heterogeneity is commonly 
associated with malignancy and aggressiveness (25,28-30).  
In addition to tumor assessment, radiomics analysis can 
be applied to nearby organs at risk to predict RT-related 
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normal tissue toxicity and guide adaptive treatment (31). 
Thus, radiomics is emerging as a promising methodology 
in RT towards the goal of providing precision medicine and 
stratifying cancer patients for personalized care.

A radiomics framework for a given tumor site has at its 
foundation a large, often multi-institutional, database of 
standard of care radiologic images from which image feature-
based predictive models of patient outcome can be built, 
along with patient clinical data. The radiomics workflow 
involves image acquisition, followed by manual or automated 
contouring of regions of interest, feature extraction, and 
finally creation of predictive models through correlation 
of image features with clinical data, e.g., diagnostic status, 
treatment response, and possibly genomics data (25,29). 
As pointed out by Gillies et al. (25), radiomics is a natural 
extension of computer-aided diagnosis and detection 
(CAD) systems; however, whereas CAD systems are aimed 
at providing a specific answer (e.g., detection of disease), 
radiomics provides a process for mining a large number 
(typically hundreds or thousands) of quantitative image 
features that can subsequently be mined for hypothesis 
generation and/or testing. Since the number of features 
often exceeds the number of patients, selection of only those 
features that contribute to clinical prediction is warranted. 
This selection entails, in part, identification of features that 
are robust, reproducible and repeatable, and not correlated 
with one another. Once the subset of useful features has 
been identified, they are then input to a model that serves 
to classify the patient, e.g., malignant versus benign disease, 
responder versus non-responder. Supervised classifier models, 
which use one data set of images and related clinical data to 
train the model, and another data set to validate and test the 
model, include methods such as random forest (based on 
decision trees), support vector machines, and convolutional 
neural networks. Unsupervised classifier models, such as 
consensus clustering, seek to categorize cancer subtypes in 
a patient population with no a priori clinical outcome data. 
For an excellent review of feature selection and classifier 
modeling, please refer to Avanzo et al. (28), and references 
contained therein. For a comprehensive review of the 
computational resources available for building a radiomics 
framework, see Court et al. (32). 

Radiomics pipeline in RT

The steps of the radiomics process for analysis of prostate 
mpMRI are shown in Figure 1. 

mpMRI of the prostate

mpMRI exam of the prostate typically includes acquisition 
of T2w, DWI and DCE-MRI data. An apparent diffusion 
coefficient (ADC) map is calculated on the MRI scanner’s 
console. The acquired images are transferred to an image 
processing station. A variety of commercial medical image 
computing platforms are currently used in RT, e.g., MIM 
(MIM, Cleveland, OH, USA), Mirada (Mirada Medical 
USA, Denver, CO, USA), and Velocity (Varian Medical 
Systems, Palo Alto, CA, USA). These commercial platforms 
are useful for image display, volume segmentation, and 
image registration, but currently do not support radiomic 
analysis.

Volume segmentation

Accurate identification of volume of interest (VOI) is 
the most critical and challenging step in the radiomics 
process. It is critical in that it defines the spatial context 
and character from which the subsequent feature data are 
derived. It is challenging for the reason that prostate is 
an organ featuring unique anatomical traits that require 
detailed segmentation and oftentimes are accompanied with 
rather indistinct margins in its radiological manifestations. 
The peripheral zone (PZ) and the transition zone (TZ) are 
in generally considered separately in identifying prostate 
habitats given the reason that they are associated with 
different imaging characteristics on T2w and ADC. The 
peri-urethral zone (PUZ), featuring high vascularity and 
yielding false positives on DCE, is commonly excluded 
from the VOI. Furthermore, regions of normal appearing 
tissue (NAT) in PZ and TZ need to be identified. Although 
efforts have been made for automation or semi-automation 
of this process, manual delineation of tumor VOI is still 
the standard clinical routine in RT of patients with prostate 
cancer. Aside from being time-consuming and resource-
demanding, manual contouring is well recognized to be 
susceptible to intra-operator and inter-operator variability 
(18,33).

Another aspect that makes VOI identification in 
prostate cancer challenging and somewhat unique is 
that segmentation is typically done within the context 
of mpMRI setting. The suspicious lesions are generally 
defined by aid of combination of co-registered image data 
from different modalities with each offering a piece of 
orthogonal information. In mpMRI, T2w provides superior 
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Figure 1 mpMRI radiomics in prostate RT. (A) mpMRI exam of the prostate typically includes acquisition of T2-weighted (T2w), diffusion-
weighted imaging (DWI) and the associated apparent diffusion coefficient (ADC) map and dynamic contrast enhanced (DCE)-MRI. In this 
panel the T2w, DWI at high b-value (1,000 s/mm2), ADC and the early enhancing image in the DCE-MRI from radiotherapy patient is 
shown. The red arrows indicate a tumor in the peripheral zone (PZ). The tumor appears darker on T2w, brighter on the high b-value DWI 
and it is characterized with reduced diffusion (ADC) and increased perfusion (DCE-MRI); (B) segmentation of volumes of interest (VOI) 
in prostate cancer radiotherapy generally involves identification of prostate, urethra, PZ, transition zone (TZ), as shown in the top panel, 
and differentiation of normal appearing tissues (NAT) in PZ and TZ, as shown in the middle panel, along with delineation of the gross 
tumor volume (GTV) in 3D, as shown in the bottom panel; (C) radiomics features extracted from prostate mpMRI can be grouped into four 
major categories related, respectively, to semantic, morphological, statistical, and transform analysis. Semantic features refer to quantitative 
descriptors derived by the radiologists empirically when assessing mpMRI, morphological features are measures of geometrical shape 
and physical composition of the segmented VOIs, statistical features quantify the gray level intensity distribution and/or spatial relations 
between image voxels inside VOIs, and transform-based features depict repetitive or non-repetitive spatial patterns through mathematical 
transformation to the segmented image content; (D) to achieve holistic models, radiomics features should be integrated with other available 
biomarkers, such as data from clinical records, genomic profiling, proteomic screening, and physiological analysis; (E) application of 
integrated data/models could span the entire range of radiotherapy for prostate cancer, from aiding in diagnostic establishment to facilitating 
patient-individualized treatment strategizing to improving predictive and prognostic accuracy. 

soft tissue contrast and clear delineation of prostatic zonal 
anatomy, DCE takes advantage of vascular difference 
between malignant lesions and surrounding prostatic tissue 
to facilitate target identification, and ADC is associated 
with the density of diffusion barriers and exploits the 

higher cellular density and more complex intracellular 
microstructure in malignant lesions to differentiate benign 
prostatic tissue. The general practice is to consider the 
volumes of intersection between the corresponding data 
from DCE and ADC for lesion definition (34).
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Radiomics features

From the identified tumor volumes, various quantitative 
radiologic features can be derived; thus, forms the engine 
of radiomic analysis for prostate cancer. Currently available 
radiomic features for prostate cancer can be grouped into 
four major categories: (I) semantic; (II) morphological; 
(III) statistical; (IV) transform-based (Table 1). Semantic 
features refer to a finite series of quantitative descriptors 
derived empirically by the radiologists when assessing 
mpMRI for improved detection, location, and risk 
stratification in patients suspected with prostate cancer, 
such as those defined in PIRADS (21). Morphological 
features describe the shape and physical composition of the 
segmented volumes. Features of this category range from 
simple first order geometric descriptors, such as volume 
and maximum diameter, to higher order topographical 
measures such as the Minkowski functionals featuring 
compactness, complexity, curvatures, and Euler number, 
etc. (35,36) and fractal dimensions that provide a measure 
of “overall roughness of local heterogeneities” (37). As to 
the statistical features, they can be further classified into 
first order and higher order statistical measures. First-order 
statistical features are related to the intensity histogram of 
image voxels within the segmented volumes and typically 

involve standard deviation, skewness, kurtosis, energy, and 
entropy with each characterizing the intensity histogram 
from the aspect of dispersion, symmetry, peakedness, 
uniformity, and randomness, respectively. Higher order 
statistical features consist of various textural parameters 
derived based on different encoding schemes including 
gray-level co-occurrence matrices (GLCOM), gray-level 
neighborhood difference matrices (GLNDM), gray-level 
run length matrices (GLRLM), and gray-level size zone 
matrices (GLSZM), amongst others. GLCOM-based 
textural parameters describe local spatial properties of the 
segmented volumes through examining the joint occurrence 
probability of one gray-level value relative to another at 
given linear displacements (38). For example, contrast 
measures the frequency of co-occurring local intensity 
variations. Correlation quantifies the spatial frequency of 
linear dependence of gray-levels. Energy describes the 
homogeneity of a region through co-occurring gray-level 
values; lower energy indicates fewer co-occurring gray-
levels. GLNDM-based features exploit visual perceptual 
property of textures by discerning the spatial details of the 
segmented volumes in terms of the gray-level difference 
between voxels and their local neighborhoods (39).  
Coarseness is a measure of average difference between the 

Table 1 Classification of radiomic features

Category Encoding scheme and technique

Semantic Prostate Imaging Reporting and Data System (PIRADS)

Morphological First order geometric descriptions

Higher order geometric descriptions

	 Minkowski functionals

	 Fractal dimension

Statistical First order statistics

	 Gray-level intensity histogram (GLIH)

Higher order statistics

	 Gray-level co-occurrence matrices (GLCOM); gray-level neighborhood difference 

matrices (GLNDM); gray-level run length matrices (GLRLM); gray-level size zone 
matrices (GLSZM)

Transform-based Fourier transform

Gabor transform

Wavelet transform

Laplacian transform of Gaussian bandpass filters
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center voxel and its neighborhoods and is an indication 
of the spatial rate of change in gray levels. Busyness 
measures the spatial frequency of intensity changes between 
neighboring regions. An image is considered complex 
when there are multifold primitive components, i.e., the 
image is non-uniform and there are rapid changes in 
gray level intensity. GLRLM-based and GLSZM-based 
features quantify the spatial frequency of contiguous sets 
of constant gray level voxels within segmented volumes 
via quantifying the connectivity along specified directions 
or in all directions (40,41). Short runs emphasis and short 
zones emphasis assess the frequency of occurrence of short 
runs and small zones of the same gray-levels within the 
segmented VOI, with greater values indicative of more fine 
textural structures. Long runs low gray-level emphasis and 
large zones low gray-level emphasis track the frequency 
of occurrence of identical gray-levels in a direction or the 
frequency of similar sized zones of low gray-levels, with 
greater values indicative of more coarse structural textures. 
For a list of representative higher order statistical radiomic 
features, please refer to Table 2. And lastly, transform-based 
features depict repetitive or non-repetitive spatial patterns 
through imposing kernel functional transformation to the 
segmented image content. Some of the popularly used 
transformation are Fourier transform, Gabor transform, 
wavelet transform, Laplacian transforms of Gaussian 
bandpass filters (42-44).

Radiomics for RT applications

While most of the prostate cancer MRI-radiomics studies 
are not directly related to RT, the methods summarized 
below can be adopted and translated for RT applications. 
We describe the papers, grouped in two major groups: 
(I) GTV delineation; and (II) cancer aggressiveness. This 
summary is updated from our 2016 radiomics review (26) 
with special emphasis on approaches developed specifically 
for RT. 

Delineation of prostate cancer lesions

The algorithms for automatic identification of the 
prostate cancer are summarized in Table 3. Madabhushi  
et al. (45) presented a method for detecting prostate cancer 
from high resolution MRI of prostatectomy samples. Lopes 
et al. (37) used fractal analysis to classify voxels as tumor or 
non-tumor on prostate T2w of 27 patients. Fractal analysis 
employed in their study combined fractal dimensions 

Table 2 Summary of representative higher order statistical  
radiomic features

Encoding scheme Feature

Gray-level intensity 
histogram (GLIH)

Standard deviation

Skewness

Kurtosis

Energy

Entropy

Gray-level co-
occurrence matrix 
(GLCOM)

Autocorrelation

Contrast

Correlation

Dissimilarity

Energy

Entropy

Homogeneity

Gray-level 
neighborhood 
difference matrix 
(GLNDM)

Coarseness

Contrast

Busyness

Complexity

Strength

Gray-level run length 
matrix (GLRLM)

Short runs emphasis

Long runs emphasis

Low gray-level runs emphasis

High gray-level runs emphasis

Short runs low gray-level emphasis

Short runs high gray-level emphasis

Long runs low gray-level emphasis

Long runs high gray-level emphasis

Gray-level non-uniformity

Run length non-uniformity

Run percentage

Gray-level size zone 
matrix (GLSZM)

Short zones emphasis

Large zones emphasis

Low gray-level zones emphasis

High gray-level zones emphasis

Short zones low gray-level emphasis

Short zones high gray-level emphasis

Large zones low gray-level emphasis

Large zones high gray-level emphasis

Gray-level non-uniformity

Zone size non-uniformity

Zone percentage
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Table 3 Summary of radiomics manuscripts related to automatic segmentation of GTV 

Reference Volumes Modality Feature category*

Madabhushi et al., 2005 (45) Prostate, ROI T2w Statistical; transform-based

Lopes et al., 2011 (37) NAT, ROI T2w Morphological; statistical

Cameron et al., 2015 (46) ROI T2w; ADC; DWI** Semantic; morphological; statistical

Shiradkar et al., 2016 (47) ROI T2w; ADC; DWI Morphological; statistical; transform-based

*, see Table 1 for feature descriptions; **, correlated diffusion imaging (CDI) and individual b-value images are used. GTV, gross tumor  
volume; NAT, normal appearing tissues; ROI, region of interest; ADC, apparent diffusion coefficient; T2w, T2-weighted; DWI,  
diffusion-weighted imaging.

with multifractal spectra indices derived based on multi-
fractional Brownian motion (mBm). The former provides 
a measure of global heterogeneity while the latter capture 
local heterogeneities. Cameron et al. (46) study provided 
a computer-aided detection of the prostate cancer using 
semantic, morphological and statistical features. 

Shiradkar et al. (47) presented a RT planning framework 
to create targeted focal treatment plans. This framework 
utilized radiomics based detection of targeting cancerous 
prostate lesions on mpMRI using a statistical feature 
enabled machine learning classifier. Using a retrospective 
dataset of 23 patients from two institutions, target volumes, 
organs at risk and transference tissue from MRI were 
deformably-mapped onto CT. Eleven patients from one 
institution were used to train a radiomics classifier for 
predicting prostate lesions in 12 patients from a second 
institution. Brachytherapy and external beam treatment 
plans for both focal and whole prostate gland with focal 
boost were generated based on the radiomics detected 
lesions. Comparisons between radiomics based focal versus 
conventional plans showed better sparing of organs at risk 
using focal treatment plans.

Prostate cancer aggressiveness 

Studies that aim to utilize radiomics to discriminate 
between low and high-risk cancer are summarized in Table 4.  
There is also a series of papers dedicated to diagnosis of a 
lesion, i.e. whether a lesion, usually manually contoured, is 
cancerous or not (54-58). These developments are outside 
of the scope of this review. 

Wibmer et al. (48) investigated higher order statistical 
features of prostate mpMRI for diagnosis purposes. In the 
follow-up study by Fehr et al. (50) on the same cohort of 
patients used first-order statistical features to discriminate 
Gleason score (GS) (3+4) =7 versus GS (4+3) =7. Vignati  

et al. (49) used statistical features related to gray-level co-
occurrence matrices including contrast and homogeneity 
extracted from T2w and ADC to predict prostate cancer 
aggressiveness.

In Nketiah et al. (51) higher statistical features related 
to gray-level co-occurrence matrices, including energy, 
contrast, correlation, and entropy, ADC, and DCE 
pharmacokinetic parameters: volume transfer constant 
(Ktrans) and extravascular-extracellular volume fraction (Ve), 
were calculated from index tumors delineated on the T2w, 
DWI, and DCE-MRI, respectively. Energy and entropy 
correlated significantly (P<0.05) with both GS and median 
ADC. Contrast correlated moderately with median ADC. 
The textural features correlated insignificantly with Ktrans 
and Ve. GS (4+3) cancers had significantly lower energy 
and higher entropy than 3+4 cancers, but insignificant 
differences in median ADC, Ktrans, and Ve. The combined 
MRI radiomics parameters yielded higher classification 
accuracy (91%) than the individual parameter sets. 

The last two papers in this section are algorithms that 
simultaneously identify the tumor lesion and assess the 
tumor aggressiveness. Tiwari et al. (52) combined radiomics 
information with metabolic data from MR spectroscopy 
(MRS) to develop a computerized decision support system. 
Features similar to Madabhushi et al. (45) were used. 

Pollack et al. (53) developed a habitat risk scoring system 
for automatic delineation of the GTV. In their approach, the 
quantitative information from the diffusion and perfusion 
mpMRI is used to identify distinct pathophysiologic regions, 
called “Habitats” (59). An automated pixel by pixel method 
was optimized and associated with GS. The “Habitat 
Risk Score” (HRS) was devised in ten subcategories with 
increasing levels associated with a greater risk of harboring 
higher GS’s and depicted as a heat map. HRS was related 
to radical prostatectomy (RP) tumor volumes and GS. The 
HRS algorithm had a higher sensitivity for detecting cancer 
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than PIRADS4/5: 45–100% for HRS4–9, compared to 
PIRADS’ 25%. The volumes of HRS6 and RP ROIs were 
concordant (slope 1.09, r=0.767; P<0.0001). HRS6 provided 
an area under the curve (AUC) =0.718, 0.802 and 0.897 for 
predicting the likelihood of cancer, GS ≥7 and GS ≥8. By 
contrast, PIRADS had an AUC =0.62, 0.64 and 0.617. A 
workflow for RT planning was created in MIM where the 
HRS contours were migrated to the planning CT to define 
GTV. This is illustrated in Figure 2, where HRS6 map is 
used as GTV in the CT. HRS maps were created for the 
first 37 patients in an institutional phase II randomized 
clinical trial “MRI-Guided Prostate Boosts Via Initial 
Lattice Stereotactic vs Daily Moderately Hypofractionated 
Radiotherapy (BLaStM)” (http://clinicaltrials.gov: 
NCT02307058). 

The promise of radiomics for treatment response

Radiomics of pre-treatment MRI 

There are very few studies relating pre-RT radiomics 
with response to RT. In Ginsburg et al. (60) statistical 
and transform-based features related to GLIH, GLCOM 
and Gabor wavelet were extracted from T2w. To identify 
which of these texture features are potential independent 
prognostic markers of prostate-specific antigen (PSA) 
failure, the authors implemented a partial least squares (PLS) 
method to embed the data in a low dimensional space and 
then use the variable importance in projections method 

to quantify the contributions of individual features to 
classification on the PLS embedding. Three Gabor wavelet 
features were identified that, in conjunction with a logistic 
regression classifier, yielded AUC of 0.83 for predicting 
the probability of biochemical recurrence following RT. 
The presented evidence, albeit in a small cohort of 16 
patients, suggests that radiomic features may capture micro-
architecture in the tumors that provide morphometric 
information for predicting biochemical failure. 

Gnep et al. (61) also investigated the association of 
radiomics and biochemical recurrence following RT. A 
retrospective cohort of 74 patients who underwent pre-
treatment mpMRI were used. Median follow-up of  
47 months revealed 11 patients with biochemical 
reoccurrence. Tumors were delineated on T2w and were 
propagated onto the co-registered ADC images. Twenty-
eight T2w statistical features related to GLCOM and 
four morphological features (tumor diameter, perimeter, 
area, and volume) were found to be significantly associated 
with biochemical recurrence (P<0.05). The most relevant 
features were T2w contrast, T2w difference variance, ADC 
median, along with tumor volume and tumor area with 
Harrell’s concordance index (C-index) from 0.76 to 0.82 
(P<0.05). By combining these most powerful features in a 
random survival forest (RSF) model, the obtained C-index 
was 0.90. The results of the study revealed that GLCOM-
based statistical features derived from T2w were strongly 
associated with biochemical recurrence, especially in the 
high-risk prostate cancer patients. Utilizing such parameters 

Table 4 Summary of radiomics manuscripts related to assessing the aggressiveness of the cancer

Reference Volumes Segmentation of tumor Modality Feature category* Analysis endpoint

Wibmer et al., 
2015 (48)

ROI Manual T2w; ADC Statistical GS =6 vs. [GS (4+3) =7 and GS (3+4) =7]; GS =6 
vs. GS ≥7; GS ≤3+4 vs. GS >3+4

Vignati et al., 
2015 (49)

ROI Manual T2w; ADC Statistical GS =6 vs. GS ≥7

Fehr et al., 
2016 (50)

ROI Manual T2w; ADC Statistical GS =6 vs. GS ≥7;
GS (3+4) =7 vs. GS (4+3) =7

Nketiah et al., 
2017 (51)

ROI Manual T2w Statistical GS (3+4) =7 vs. GS (4+3) =7

Tiwari et al., 
2014 (52)

ROI Automatic T2w Statistical;  
transform-based

[GS = (≤3+3) and GS = (3+4)] vs. [GS = (4+3) and 
GS = (4+4) and GS = (>4+4)]

Pollack et al., 
2017 (53)

ROI Automatic DCE-MRI; ADC Statistical Benign vs. GS ≥6; benign and GS =6 vs. GS ≥7; 
benign and GS =6 and GS =7 vs. GS ≥8

*, see Table 1 for feature descriptions. NAT, normal appearing tissues; ROI, region of interest; GS, Gleason score; DCE, dynamic contrast 
enhanced; ADC, apparent diffusion coefficient; T2w, T2-weighted.
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could have significant role in clinical decision-making 
process in future.

Delta-radiomics

Changes in radiomic features, called delta-radiomics, 
have been studied for their prognostic potentials in cancer 
management. The availability of longitude imaging studies 
pre-, during and post-RT provides a logical basis for delta-
radiomics in RT. Currently, there are very few RT studies, 
mainly based on CT delta-radiomics. Cunliffe et al. (62) 
used delta-radiomics to identify a set of intensity and 
texture-based features related to radiation pneumonitis 
development for esophageal cancer patients. The authors 
analyzed the twenty texture features between pre- and 
after radiation therapy CT scans for all ROIs and found 

significant changes in twelve texture features with increasing 
radiation dose for patients who developed ≥2 radiation 
pneumonitis. However, this study was not able to determine 
the optimum set of texture features and model due to small 
patient size. A study by Fave et al. (63) investigated the 
change of radiomics features measured from CT images of 
non-small cell lung cancer (NSCLC) acquired at multiple 
time points during RT therapy for prediction of tumor 
response. In addition to delta-radiomics features obtained 
from the weekly 4D CT scans, this study incorporated 
clinical factors and pre-treatment radiomics features for 
prediction of patient outcome, including overall survival, 
freedom from distant metastases, and local-regional control. 
This study found that delta-radiomics were prognostic for 
overall survival although it did not offer substantially new 
prognostic information for distant metastases. For local-

Figure 2 Implementation of Habitat Risk Score (HRS) in radiotherapy planning of a BLaStM patient. (A) An axial slice of the prostate on 
T2-weighted (T2w) MRI. The red arrow indicates an anterior tumor, characterized with hypo-intensity in the T2w; (B) corresponding 
slice of apparent diffusion coefficient (ADC) map with area of restricted diffusion (red arrow); (C) early enhancing image from the dynamic 
contrast enhanced (DCE)-MRI showing increased perfusion in the tumor area (red arrow); (D) Habitat Risk Score (HRS), represented as a 
heat-map, overlaid on the T2w. HRS is calculated in MIM, using Java plug-in. The approach scores every pixel with a 10-point scale (insert) 
in increasing risk for cancer. The volume of HRS10 is empty; (E) the 3D volume of the tumor, as depicted by HRS6 is used for gross tumor 
volume (GTV), the red arrow pointing to a fiducial marker; (F) the planning CT is aligned to the T2w, using fiducial matching (red arrow). 
The final result is displayed where the smoothed HRS6 contour has been migrated to the planning CT. 

A B C D
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regional recurrence, however, texture strength feature 
measured from the last week of 4D CT images was found 
to be predictive for outcome. The limitation of this study 
included the lack of independent model validation and use 
of median predicted value for the cut-off point of high- and 
low- risks patients. 

Applying delta-radiomics approach to mpMRI is, 
however, challenging because of the numerous sequences, 
as well as the lack of outcome data for patients with 
contemporary mpMRI studies. There is also significant 
evidence that there is detectable radiomic signal pre- 
and post-RT. Based on preclinical studies, Lin et al. 
demonstrated that ADC values within the treated region 
of the tumor increased after RT compared with that of 
the untreated region (64). The authors implanted mice 
with cells from a transgenic adenocarcinoma of the mouse 
prostate (TRAMP)-C1 in order to investigate the biological 
meaning of changes within the ADC intensity values before 
and after RT. Intensity histogram analysis determined an 
increase in the entire normal distribution of the irradiated 
region as well as a decrease in kurtosis for that region, all 
coinciding with a decrease in pixel-by-pixel nuclear count 
with increased extracellular space and nuclear size. These 
ADCs were positively correlated with extracellular spaces 
and nuclear sizes while negatively correlating with nuclear 
counts, cytoplasmic space, and nuclear spaces. These 
changes are often associated with cell death pathways 
(decreased nuclear counts, increased extracellular space) 
and giant cell formation caused by disorganization of the 
mitotic spindle and incomplete mitosis (increased nuclear 
size). These studies, together with the maturing of the 
mpMRI data underscore the prospect of delta-radiomics for 
the development of new and powerful prediction models. 
However, it is important for such studies to focus on 
improving the standardization of texture features measured 
before treatment first and then correlating the values of 
texture features with biological and molecular characteristics 
as also suggested by Fave et al. (63).

Discussion

Although MRI-based radiomics shows great promise 
in cancer management, there are significant challenges. 
Unlike CT, MR image intensities do not necessarily 
reflect physical parameters like electron density, but vary 
with voxel size, magnetic field strength, pulse sequence, 
machine vendor and reconstruction algorithm (22). 

Several studies have investigated the dependence of 
radiomic textural features on MRI field strength, scanner 
manufacturer, and MRI acquisition parameters in both 
living subjects and phantoms (65-71). The basic strategy 
of radiomics is challenged by the wide range of image 
acquisition parameters and reconstruction algorithms 
among institutions and scanners (72). Thus, testing 
of MRI-based radiomic features for robustness and 
reproducibility is an important initial step in the radiomic 
workflow, and standardization of MR image acquisition 
across institutions should be encouraged.

Radiomics has the potential to describe tumor morphology 
using computer accessible imaging features that can be directly 
related to diagnosis or risk assessment. Dose escalation in 
radiation treatment of prostate cancer has been shown to 
reduce biochemical failure (9). While dose escalation also has 
been shown to reduce the need for androgen deprivation in 
intermediate to high risk patients, when the entire prostate 
is dose escalated, the complication risk rises (12,73,74). 
Dose escalation only to determinate prostate habitats has 
the potential to improve tumor control with less toxicity 
than when the entire prostate dose is escalated. The goal of 
the aforementioned ongoing BlaStM trial and other clinical 
trials at University of Miami is to evaluate various methods 
of increasing dose to the mpMRI-defined tumor region(s). In 
addition to treating the GTV, HRS is used to assign targets 
for the mpMRI-Ultrasound (MRI-US) fusion biopsy (75),  
aimed at generating data from MRI-US fusion biopsy 
pathology and gene expression. The rationale is that follow-
up patient data (mpMRI at 3, 9 months and 2–2.5 years post-
treatment) and biopsy at 2–2.5 years post-treatment will add 
additional information that may lead to better stratification, 
treatment, and prognosis of patients. 

In conclusion, this review paper has summarized 
ongoing efforts to correlate radiomics features, acquired 
from prostate cancer MRI prior, during and after radiation 
treatment, to patient outcome. It should be stated that 
the concepts, methods and tools described herein are not 
currently applicable to the radiation oncology practice 
outside of the research setting. More data is required 
in the form of clinical trials to assess the robustness of 
radiomics-based predictive models, and to maximize the 
efficacy of these models. As medical imaging scientists and 
radiation oncology physicians grow more comfortable with 
integrating radiomics and into clinical decision-making, 
we believe this important innovation has the potential to 
provide a significant step toward the goal of personalized 
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patient care for prostate cancer. 
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